forked from vuoristo/dqn-agent
-
Notifications
You must be signed in to change notification settings - Fork 2
/
ConvModel.py
139 lines (114 loc) · 4.53 KB
/
ConvModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
""" Defines a model using convolutional neural network for action value
function approximation using image inputs. The model takes window_size
consecutive images as the input. The consecutive images are considered
input features and are processed in one pass of the network.
"""
from DQNModel import DQNModel
import numpy as np
import tensorflow as tf
from PIL import Image, ImageOps
def weight_variable(name, shape, trainable):
return tf.get_variable(name,
shape=shape, initializer=tf.truncated_normal_initializer(stddev=0.02),
trainable=trainable)
def bias_variable(name, shape, trainable):
return tf.get_variable(name,
shape=shape, initializer=tf.constant_initializer(value=0.02),
trainable=trainable)
def conv2d(x,W,strides):
return tf.nn.conv2d(x,W,strides=strides, padding='SAME')
class ConvModel(DQNModel):
def __init__(self, env, resize_shape=(84, 84), crop_centering=(0.5,0.7),
window_size=4, grayscale=True, **kwargs):
"""
arguments:
env -- OpenAI gym environment
keyword arguments:
resize_shape -- All input images are resized to this shape.
default (84,84)
crop_centering -- Control the cropping position. Default (0.5,0.7)
window_size -- Number of consecutive observations to feed to the
network. default 4
grayscale -- Convert inputs to grayscale. default True
"""
self.resize_shape = resize_shape
self.crop_centering = crop_centering
self.input_shape = [0,0,0]
self.input_shape[1] = resize_shape[0]
self.input_shape[2] = resize_shape[1]
self.grayscale = grayscale
if grayscale:
self.input_shape[0] = window_size
else:
self.input_shape[0] = window_size * 3
self.window_size = window_size
super(ConvModel, self).__init__(env, **kwargs)
def build_net(self, x, trainable=True):
"""Builds a convolutional neural network. Assumes square input
images. Returns a dictionary containing weight variables and
outputs.
"""
x_input = tf.transpose(x, (0,2,3,1))
with tf.variable_scope('conv1'):
W_conv1 = weight_variable('W', [8, 8, self.input_shape[0], 32],
trainable)
b_conv1 = bias_variable('b', [32], trainable)
h_conv1 = tf.nn.relu(conv2d(x_input, W_conv1, [1,4,4,1]) +
b_conv1, name='h')
with tf.variable_scope('conv2'):
W_conv2 = weight_variable('W', [4,4,32,64], trainable)
b_conv2 = bias_variable('b', [64], trainable)
h_conv2 = tf.nn.relu(conv2d(h_conv1, W_conv2, [1,2,2,1]) +
b_conv2, name='h')
with tf.variable_scope('conv3'):
W_conv3 = weight_variable('W', [3,3,64,64], trainable)
b_conv3 = bias_variable('b', [64], trainable)
h_conv3 = tf.nn.relu(conv2d(h_conv2, W_conv3, [1,1,1,1]) +
b_conv3, name='h')
with tf.variable_scope('fc1'):
conv3_out_size = 11*11*64
W_fc1 = weight_variable('W', [conv3_out_size, 512], trainable)
b_fc1 = bias_variable('b', [512], trainable)
h_conv3_flat = tf.reshape(h_conv3, [-1, conv3_out_size])
h_fc1 = tf.nn.relu(tf.matmul(h_conv3_flat, W_fc1) + b_fc1, name='h')
with tf.variable_scope('output'):
W_linear = weight_variable('W', [512, self.num_actions], trainable)
b_linear = bias_variable('b', [self.num_actions], trainable)
outputs = tf.matmul(h_fc1, W_linear) + b_linear
net_dict = {
'shared_vars':{
'W_conv1': W_conv1,
'b_conv1': b_conv1,
'W_conv2': W_conv2,
'b_conv2': b_conv2,
'W_conv3': W_conv3,
'b_conv3': b_conv3,
'W_fc1': W_fc1,
'b_fc1': b_fc1,
'W_linear': W_linear,
'b_linear': b_linear,
},
'outputs':outputs,
'x':x_input,
}
return net_dict
def reshape_input(self, observation):
return np.reshape(observation, (-1, self.input_shape[0],
self.input_shape[1], self.input_shape[2]))
def infer_online_q(self, observation):
""" Run forward pass of the online net. input_ob0s is the input
placeholder for the online_model.
"""
q = self.sess.run(self.online_model['outputs'], feed_dict={
self.first_observation:observation})
return q
def reshape_observation(self, observation):
""" Crop non-square inputs to squares positioned with
crop_centering. Resize to resize_shape. Optionally convert to
grayscale.
"""
img = Image.fromarray(observation)
img = ImageOps.fit(img, self.resize_shape, centering=self.crop_centering)
if self.grayscale:
img = img.convert('L')
return np.array(img)