-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' into min_run_number
- Loading branch information
Showing
8 changed files
with
685 additions
and
190 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
from . import peaks_ext | ||
from .peaks_ext import * | ||
|
||
from . import peak_basics_ext | ||
from .peak_basics_ext import * |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,234 @@ | ||
import numba | ||
import numpy as np | ||
import strax | ||
from immutabledict import immutabledict | ||
|
||
export, __all__ = strax.exporter() | ||
|
||
|
||
# For n_competing, which is temporarily added to PeakBasics | ||
@export | ||
@strax.takes_config( | ||
strax.Option( | ||
"channel_map", | ||
type=immutabledict, | ||
track=False, | ||
help="Map of channel numbers to top, bottom and aqmon, to be defined in the context", | ||
), | ||
strax.Option( | ||
"check_peak_sum_area_rtol", | ||
default=1e-4, | ||
help="Check if the area of the sum-wf is the same as the total area" | ||
" (if the area of the peak is positively defined)." | ||
" Set to None to disable.", | ||
), | ||
strax.Option( | ||
's1_min_width', | ||
default=10, | ||
help="Minimum (IQR) width of S1s" | ||
), | ||
strax.Option( | ||
's1_max_width', | ||
default=225, | ||
help="Maximum (IQR) width of S1s" | ||
), | ||
strax.Option( | ||
's1_min_area', | ||
default=10, | ||
help="Minimum area (PE) for S1s" | ||
), | ||
strax.Option( | ||
's2_min_area', | ||
default=10, | ||
help="Minimum area (PE) for S2s" | ||
), | ||
strax.Option( | ||
's2_min_width', | ||
default=225, | ||
help="Minimum width for S2s" | ||
), | ||
strax.Option( | ||
's1_min_channels', | ||
default=5, | ||
help="Minimum number of channels for S1s" | ||
), | ||
strax.Option( | ||
's2_min_channels', | ||
default=5, | ||
help="Minimum number of channels for S2s" | ||
), | ||
strax.Option( | ||
's2_min_area_fraction_top', | ||
default=0, | ||
help="Minimum area fraction top for S2s" | ||
), | ||
strax.Option( | ||
's1_max_area_fraction_top', | ||
default=.2, | ||
help="Maximum area fraction top for S1s" | ||
), | ||
) | ||
class PeakBasicsEXT(strax.Plugin): | ||
provides = ("peak_basics_ext",) | ||
depends_on = ("peaks_ext", ) | ||
data_kind = "peaks_ext" | ||
|
||
parallel = "False" | ||
rechunk_on_save = False | ||
__version__ = "2.1" | ||
dtype = [ | ||
(('Start time of the peak (ns since unix epoch)', | ||
'time'), np.int64), | ||
(('End time of the peak (ns since unix epoch)', | ||
'endtime'), np.int64), | ||
(('Weighted center time of the peak (ns since unix epoch)', | ||
'center_time'), np.int64), | ||
(('Peak integral in PE', | ||
'area'), np.float32), | ||
(('Number of hits contributing at least one sample to the peak', | ||
'n_hits'), np.int32), | ||
(('Number of PMTs contributing to the peak', | ||
'n_channels'), np.int16), | ||
(('PMT number which contributes the most PE', | ||
'max_pmt'), np.int16), | ||
(('Area of signal in the largest-contributing PMT (PE)', | ||
'max_pmt_area'), np.float32), | ||
(('Total number of saturated channels', | ||
'n_saturated_channels'), np.int16), | ||
(('Width (in ns) of the central 50% area of the peak', | ||
'range_50p_area'), np.float32), | ||
(('Width (in ns) of the central 90% area of the peak', | ||
'range_90p_area'), np.float32), | ||
(('Fraction of area seen by the top array ' | ||
'(NaN for peaks with non-positive area)', | ||
'area_fraction_top'), np.float32), | ||
(('Length of the peak waveform in samples', | ||
'length'), np.int32), | ||
(('Time resolution of the peak waveform in ns', | ||
'dt'), np.int16), | ||
(('Time between 10% and 50% area quantiles [ns]', | ||
'rise_time'), np.float32), | ||
(('Number of PMTs with hits within tight range of mean', | ||
'tight_coincidence'), np.int16), | ||
(('Type of peak (s1 or s2)', | ||
'type'), np.int16), | ||
] | ||
|
||
def compute(self, peaks_ext): | ||
p = peaks_ext | ||
r = np.zeros(len(p), self.dtype) | ||
needed_fields = 'time length dt area type' | ||
for q in needed_fields.split(): | ||
r[q] = p[q] | ||
|
||
r['endtime'] = p['time'] + p['dt'] * p['length'] | ||
r['n_channels'] = (p['area_per_channel'] > 0).sum(axis=1) | ||
r['n_hits'] = p['n_hits'] | ||
r['range_50p_area'] = p['width'][:, 5] | ||
r['range_90p_area'] = p['width'][:, 9] | ||
r['max_pmt'] = np.argmax(p['area_per_channel'], axis=1) | ||
r['max_pmt_area'] = np.max(p['area_per_channel'], axis=1) | ||
r['tight_coincidence'] = p['tight_coincidence'] | ||
r['n_saturated_channels'] = p['n_saturated_channels'] | ||
|
||
# Negative-area peaks get NaN AFT | ||
m = p['area'] > 0 | ||
r['rise_time'] = -p['area_decile_from_midpoint'][:, 1] | ||
|
||
# Negative or zero-area peaks have centertime at startime | ||
r["center_time"] = p["time"] | ||
r["center_time"][m] += self.compute_center_times(p[m]) | ||
|
||
# Determine peak type | ||
# 0 = unknown | ||
# 1 = s1 | ||
# 2 = s2 | ||
|
||
is_s1 = p['area'] >= 0 | ||
is_s1 &= r['range_50p_area'] > self.config['s1_min_width'] | ||
is_s1 &= r['range_50p_area'] < self.config['s1_max_width'] | ||
is_s1 &= r['n_channels'] >= 0 | ||
|
||
is_s2 = p['area'] > 0 | ||
is_s2 &= r['range_50p_area'] > self.config['s2_min_width'] | ||
is_s2 &= r['n_channels'] >= 0 | ||
|
||
# if both are true, then it's an unknown peak | ||
is_s1 &= ~is_s2 | ||
is_s2 &= ~is_s1 | ||
|
||
r['type'][is_s1] = 1 | ||
r['type'][is_s2] = 2 | ||
|
||
return r | ||
|
||
|
||
@staticmethod | ||
@numba.jit(nopython=True, nogil=True, cache=False) | ||
def find_n_competing(peaks, window, fraction): | ||
n = len(peaks) | ||
t = peaks["time"] | ||
a = peaks["area"] | ||
results = np.zeros(n, dtype=np.int16) | ||
left_i = 0 | ||
right_i = 0 | ||
for i, peak in enumerate(peaks): | ||
while t[left_i] + window < t[i] and left_i < n - 1: | ||
left_i += 1 | ||
while t[right_i] - window < t[i] and right_i < n - 1: | ||
right_i += 1 | ||
results[i] = np.sum(a[left_i : right_i + 1] > a[i] * fraction) | ||
|
||
return results | ||
|
||
@staticmethod | ||
@numba.njit(cache=True, nogil=True) | ||
def compute_center_times(peaks): | ||
result = np.zeros(len(peaks), dtype=np.int32) | ||
for p_i, p in enumerate(peaks): | ||
t = 0 | ||
for t_i, weight in enumerate(p["data"]): | ||
t += t_i * p["dt"] * weight | ||
result[p_i] = t / p["area"] | ||
return result | ||
|
||
@staticmethod | ||
def check_area(area_per_channel_sum, peaks, rtol) -> None: | ||
""" | ||
Check if the area of the sum-wf is the same as the total area | ||
(if the area of the peak is positively defined). | ||
:param area_per_channel_sum: the summation of the | ||
peaks['area_per_channel'] which will be checked against the | ||
values of peaks['area']. | ||
:param peaks: array of peaks. | ||
:param rtol: relative tolerance for difference between | ||
area_per_channel_sum and peaks['area']. See np.isclose. | ||
:raises: ValueError if the peak area and the area-per-channel | ||
sum are not sufficiently close | ||
""" | ||
positive_area = peaks["area"] > 0 | ||
if not np.sum(positive_area): | ||
return | ||
|
||
is_close = np.isclose( | ||
area_per_channel_sum[positive_area], | ||
peaks[positive_area]["area"], | ||
rtol=rtol, | ||
) | ||
|
||
if not is_close.all(): | ||
for peak in peaks[positive_area][~is_close]: | ||
print("bad area") | ||
strax.print_record(peak) | ||
|
||
p_i = np.where(~is_close)[0][0] | ||
peak = peaks[positive_area][p_i] | ||
area_fraction_off = ( | ||
1 - area_per_channel_sum[positive_area][p_i] / peak["area"] | ||
) | ||
message = ( | ||
f"Area not calculated correctly, it's " | ||
f'{100 * area_fraction_off} % off, time: {peak["time"]}' | ||
) | ||
raise ValueError(message) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
import numba | ||
import numpy as np | ||
import strax | ||
|
||
export, __all__ = strax.exporter() | ||
|
||
@export | ||
@strax.takes_config( | ||
strax.Option('peak_gap_threshold', default=300, | ||
help="No hits for this many ns triggers a new peak"), | ||
strax.Option('peak_left_extension', default=10, | ||
help="Include this many ns left of hits in peaks"), | ||
strax.Option('peak_right_extension', default=10, | ||
help="Include this many ns right of hits in peaks"), | ||
strax.Option('peak_min_area', default=10, | ||
help="Minimum contributing PMTs needed to define a peak"), | ||
strax.Option('peak_min_pmts', default=1, | ||
help="Minimum contributing PMTs needed to define a peak"), | ||
strax.Option('single_channel_peaks', default=False, | ||
help='Whether single-channel peaks should be reported'), | ||
strax.Option('peak_split_min_height', default=25, | ||
help="Minimum height in PE above a local sum waveform" | ||
"minimum, on either side, to trigger a split"), | ||
strax.Option('peak_split_min_ratio', default=4, | ||
help="Minimum ratio between local sum waveform" | ||
"minimum and maxima on either side, to trigger a split"), | ||
strax.Option('diagnose_sorting', track=False, default=False, | ||
help="Enable runtime checks for sorting and disjointness"), | ||
strax.Option('n_tpc_pmts', track=False, default=False, | ||
help="Number of channels"), | ||
strax.Option('gain_to_pe_array', default=None, | ||
help="Gain to pe array"), | ||
) | ||
class PeaksEXT(strax.Plugin): | ||
depends_on = ('records_ext',) | ||
data_kind = 'peaks_ext' | ||
parallel = 'process' | ||
provides = ('peaks_ext') | ||
rechunk_on_save = True | ||
|
||
__version__ = '0.0.1' | ||
|
||
def infer_dtype(self): | ||
|
||
return strax.peak_dtype(n_channels=self.config['n_tpc_pmts']) | ||
|
||
def compute(self, records_ext, start, end): | ||
|
||
r = records_ext | ||
|
||
if self.config['gain_to_pe_array'] is None: | ||
self.to_pe = np.ones(self.config['n_tpc_pmts']) | ||
else: | ||
self.to_pe = self.config['gain_to_pe_array'] | ||
|
||
hits = strax.find_hits(r) | ||
hits = strax.sort_by_time(hits) | ||
|
||
rlinks = strax.record_links(r) | ||
|
||
# Rewrite to just peaks/hits | ||
peaks = strax.find_peaks( | ||
hits, self.to_pe, | ||
gap_threshold=self.config['peak_gap_threshold'], | ||
left_extension=self.config['peak_left_extension'], | ||
right_extension=self.config['peak_right_extension'], | ||
min_area=self.config['peak_min_area'], | ||
min_channels=1, | ||
result_dtype=strax.peak_dtype(n_channels=self.config['n_tpc_pmts']) | ||
) | ||
|
||
strax.sum_waveform(peaks, hits, r, rlinks, self.to_pe) | ||
|
||
peaks = strax.split_peaks( | ||
peaks, hits, r, rlinks, self.to_pe, | ||
min_height=self.config['peak_split_min_height'], | ||
min_ratio=self.config['peak_split_min_ratio']) | ||
|
||
strax.compute_widths(peaks) | ||
|
||
return peaks |
Oops, something went wrong.