-
Notifications
You must be signed in to change notification settings - Fork 32
Running FastprojectR An Example
Here a brief demo of running FastProject on data from Patel and Tirosh et al 2014, the example used in the FastProject publication
Required Files - Can be downloaded here
First gather the expression matrix file - expression_matrix.txt
The top of the file will look like this:
MGH264_A01 MGH264_A02 MGH264_A03 MGH264_A04 MGH264_A05 MGH264_A06 MGH264_A07 MGH264_A08 MGH264_A10
A2M 0.00 0.00 0.00 0.00 0.00 1.81 0.00 0.00 0.00 0.00 0.00
AAAS 0.00 0.00 0.00 0.00 7.63 0.00 0.00 0.00 0.00 8.21 1.14
AAK1 0.00 0.83 5.72 2.32 1.82 8.68 6.64 2.07 4.47 5.81 1.49
AAMP 8.47 8.18 0.00 9.33 0.00 1.81 8.03 8.24 0.00 7.96 0.00
AARS 8.21 0.00 0.00 0.00 8.14 2.59 0.00 9.20 0.00 0.00 0.00
AARSD1 1.15 3.64 3.12 0.00 7.72 8.01 7.94 0.00 0.00 7.42 6.09
AASDH 7.28 6.08 0.00 6.98 8.01 6.48 3.19 0.00 0.00 5.95 6.09
AASS 6.30 8.74 6.56 9.48 9.05 6.84 9.12 8.46 2.65 1.63 8.96
AATF 6.19 9.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ABAT 6.71 6.56 0.00 8.32 7.45 9.48 8.75 0.00 7.31 9.85 8.03
ABCA1 0.00 0.00 5.91 9.64 0.00 0.00 8.11 7.01 0.00 4.32 7.50
ABCA8 1.61 0.00 0.00 3.02 0.00 0.00 3.19 0.00 0.00 0.00 0.00
More information on requirements for the expression file can be found here: Gene Expression Matrix
Then some signature files are needed. For this demo, two are used, tcga_sigs.txt
and h.all.v5.1.symbols.gmt
The first, tcga_sigs.txt
was obtained from Verhaak et al, 2010
TCGA Proneural Plus CDKN1B
TCGA Proneural Plus EPB41
TCGA Proneural Plus CLGN
TCGA Proneural Plus PDE10A
TCGA Proneural Plus RALGPS2
.
.
TCGA Proneural Minus TTPA
TCGA Proneural Minus SIRT5
TCGA Proneural Minus CASQ1
TCGA Proneural Minus AKR7A3
TCGA Proneural Minus MRPL49
.
.
TCGA Neural Plus TTPA
TCGA Neural Plus SIRT5
TCGA Neural Plus CASQ1
TCGA Neural Plus AKR7A3
TCGA Neural Plus MRPL49
.
.
The second, h.all.v5.1.symbols.gmt
, can be downloaded from MSigDB and represents their collection of Hallmark gene sets. Below is a preview of this type of .gmt signature file:
HALLMARK_TNFA_SIGNALING_VIA_NFKB http://www.broadinst... JUNB CXCL2 ATF3 NFKBIA TNFAIP3 PTGS2 CXCL1 IER3 CD83 CCL20 CXCL3 MAFF NFKB2
HALLMARK_HYPOXIA http://www.broadinst... PGK1 PDK1 GBE1 PFKL ALDOA ENO2 PGM1 NDRG1 HK2 ALDOC GPI MXI1 SLC2A1
HALLMARK_CHOLESTEROL_HOMEOSTASIS http://www.broadinst... FDPS CYP51A1 IDI1 FDFT1 DHCR7 SQLE HMGCS1 NSDHL LSS MVD LDLR TM7SF2 ALDOC
HALLMARK_MITOTIC_SPINDLE http://www.broadinst... ARHGEF2 CLASP1 KIF11 KIF23 ALS2 ARF6 MYO9B MYH9 TUBGCP3 CKAP5 RACGAP1 PREX1 ARHGEF3
HALLMARK_WNT_BETA_CATENIN_SIGNALING http://www.broadinst... MYC CTNNB1 JAG2 NOTCH1 DLL1 AXIN2 PSEN2 FZD1 NOTCH4 LEF1 AXIN1 NKD1 WNT5B
HALLMARK_TGF_BETA_SIGNALING http://www.broadinst... TGFBR1 SMAD7 TGFB1 SMURF2 SMURF1 BMPR2 SKIL SKI ACVR1 PMEPA1 NCOR2 SERPINE1 JUNB
HALLMARK_IL6_JAK_STAT3_SIGNALING http://www.broadinst... IL4R IL6ST STAT1 IL1R1 CSF2RB SOCS3 STAT3 OSMR IL2RG IFNGR1 TYK2 IL13RA1 TLR2
More information on valid signature file formats can be found here: Signatures
Unless you are running the analysis with the paramter nomodel
set to False, a housekeeping gene file is required. If using the Gene Name Housekeeping
file available from the input file download page, a preview looks like such:
RPL10
ACTN4
GPAA1
.
.
RPS15
H2AFY
Lastly, it can be helpful to include some meta-data for the samples. This is incorporated into the output visualization. In this case, a pre-computed signature file is included with information on which patient each tumor cell was donated from.
For this example, this file will be called precomputed_signatures.txt
A preview of precomputed_signatures.txt
Type MGH264_A01 MGH264_A02 MGH264_A03 MGH28_C12 MGH28_D01 MGH28_D03
Patient Factor 264 264 264 28 28 28
More information on the precomputed-signature file format here: Sample Meta-Data (a.k.a "Pre-computed Signatures")*
Once the required files have been gathered, and FastProject has been installed (Installation Instructions) the analysis can be run by entering this command in your terminal:
fp <- FastProject("expression_matrix.txt", "housekeeping_genes/Gene Name Housekeeping.txt", c("tcga_sigs.txt", "h.all.v5.1.symbols.gmt"), precomputed="precomputed.txt")
fpo <- Analyze(fp)
For more documentation on object parameters, see this page: FastProjectR Parameters
After the analysis, a FastProjectOutput object will be created. You can either view the report without saving the object first with
viewResults(fpo)
or view the report while saving the object as an RDS file first:
saveFPOutAndViewResults(fpo)
It is recommended to use Google Chrome for best viewing results.