conda create -n split_computing
pip install ultralytics=8.0.227
All models are trained and validated on COCO dataset. Dataset should be in YOLOv8 format:
coco
│
└───images
│ │
│ └───val2017
│ │ │ image_01.jpg
│ │ │ ...
│ │
│ └───train2017
│ │ image_02.jpg
│ │ ...
│
└───labels
│ │
│ └───val2017
│ │ │ image_01.txt
│ │ │ ...
│ │
│ └───train2017
│ │ image_02.txt
│ │ ...
│
└───annotations # necessary only for evaluation
│ │
│ │ instances_val2017.json
Some of the bottlenecks reduce input image 4 times.
During validation, it is necessary to ensure that the size of all images is divisible by 64.
We have ensured this by resizing and padding all validation images.
python yolov8/data_preparation.py \
--dataset_root path/to/coco
python yolov8/yolo8_train.py \
--model_name ../configs/yolo8/models/yolov8m_early_bn-1.yaml \
--data_path ../configs/yolo8/models/coco.yaml \
--workers 4 \
--epochs 36 \
--optimizer "SGD" \
--lr0 0.005 \
--batch 16 \
--yolo_checkpoint ../yolo_weights/yolov8m.pt
python yolov8/yolo8_eval.py \
--dataset_path ../configs/yolo8/models/coco.yaml \
--checkpoint_path path/to/checkpoint.pt