Skip to content

ZJULearning/depthInpainting

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LRLG: Depth Image Inpainting: Improving Low Rank Completion with Low Gradient Regularization

Table of Contents

Introduction

LRLG is an algorithm for single depth image inpainting.

Performance

Datasets

Compared Algorithms

Results

LRLG achieved the best search performance among all the compared algorithms.

Building Instruction

Prerequisites

  • GCC 4.5+
  • CMake 2.8+
  • OpenCV 2.4.1+

Compile

  1. Install Dependencies:
$ sudo apt-get install g++ cmake opencv-dev
  1. Compile:
$ git clone https://github.com/ZJULearning/depthInpainting.git
$ mkdir build/ && cd build/
$ cmake ..
$ make -j

Usage

TV norm: ./depthInpainting TV depthImage

PSNR calc: ./depthInpainting P depthImage mask inpainted

Inpainting: ./depthInpainting LRTV depthImage mask outputPath"

Generating: ./depthInpainting G depthImage missingRate outputMask outputMissing

LowRank: ./depthInpainting L depthImahe mask outputpath

LRTVPHI: ./depthInpainting LRTVPHI depthImage mask outputPath

TVPHI norm: ./depthInpainting TVPHI depthImage

LRL0: ./depthInpainting LRL0 depthImage mask outputPath initImage K lambda_L0 MaxIterCnt

LRL0PHI: ./depthInpainting LRL0PHI depthImage mask outputPath initImage K lambda_L0 MaxIterCnt

L0: /depthInpainting L0 depthImage

Reference

Reference to cite when you use LRLG in a research paper:

@article{xue2017depth,
  title={Depth image inpainting: Improving low rank matrix completion with low gradient regularization},
  author={Xue, Hongyang and Zhang, Shengming and Cai, Deng},
  journal={IEEE Transactions on Image Processing},
  volume={26},
  number={9},
  pages={4311--4320},
  year={2017},
  publisher={IEEE}
}

License

LRLG is MIT-licensed.

About

Depth Image Inpainting with Low Gradient Regularization

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published