LRLG is an algorithm for single depth image inpainting.
- [LR] (https://epubs.siam.org/doi/abs/10.1137/080738970)
- [LRTV] (https://ieeexplore.ieee.org/abstract/document/7113897/)
- LRL0: a designed based-line, which employs L0 gradient minimization.
LRLG achieved the best search performance among all the compared algorithms.
- GCC 4.5+
- CMake 2.8+
- OpenCV 2.4.1+
- Install Dependencies:
$ sudo apt-get install g++ cmake opencv-dev
- Compile:
$ git clone https://github.com/ZJULearning/depthInpainting.git
$ mkdir build/ && cd build/
$ cmake ..
$ make -j
TV norm: ./depthInpainting TV depthImage
PSNR calc: ./depthInpainting P depthImage mask inpainted
Inpainting: ./depthInpainting LRTV depthImage mask outputPath"
Generating: ./depthInpainting G depthImage missingRate outputMask outputMissing
LowRank: ./depthInpainting L depthImahe mask outputpath
LRTVPHI: ./depthInpainting LRTVPHI depthImage mask outputPath
TVPHI norm: ./depthInpainting TVPHI depthImage
LRL0: ./depthInpainting LRL0 depthImage mask outputPath initImage K lambda_L0 MaxIterCnt
LRL0PHI: ./depthInpainting LRL0PHI depthImage mask outputPath initImage K lambda_L0 MaxIterCnt
L0: /depthInpainting L0 depthImage
Reference to cite when you use LRLG in a research paper:
@article{xue2017depth,
title={Depth image inpainting: Improving low rank matrix completion with low gradient regularization},
author={Xue, Hongyang and Zhang, Shengming and Cai, Deng},
journal={IEEE Transactions on Image Processing},
volume={26},
number={9},
pages={4311--4320},
year={2017},
publisher={IEEE}
}
LRLG is MIT-licensed.