This repository contains datasets from several domains annotated with a variety of entity types, useful for entity recognition and named entity recognition (NER) tasks.
The following table shows the list of datasets for English-language entity recognition (for a list of NER datasets in other languages, see below). The data directory contains information on where to obtain those datasets which could not be shared due to licensing restrictions, as well as code to convert them (if necessary) to the CoNLL 2003 format. Links to NER corpora in other languages are also listed below.
Dataset | Domain | License | Reference | Availablility |
---|---|---|---|---|
CONLL 2003 | News | DUA | Sang and Meulder, 2003 | Easy to find |
NIST-IEER | News | None | NIST 1999 IE-ER | NLTK data |
MUC-6 | News | LDC | Grishman and Sundheim, 1996 | LDC 2003T13 |
OntoNotes 5 | Various | LDC | Weischedel et al., 2013 | LDC 2013T19 |
BBN | Various | LDC | Weischedel and Brunstein, 2005 | LDC 2005T33 |
GMB-1.0.0 | Various | None | Bos et al., 2017 | http://gmb.let.rug.nl/data.php |
GUM-3.1.0 | Wiki | Several (*2) | Zeldes, 2016 | ✔ Included here |
wikigold | Wikipedia | CC-BY 4.0 | Balasuriya et al., 2009 | ✔ Included here |
Ritter | None | Ritter et al., 2011 | No split , Train/test/dev split | |
BTC | CC-BY 4.0 | Derczynski et al., 2016 | ✔ Included here | |
WNUT17 | Social media | CC-BY 4.0 | Derczynski et al., 2017 | ✔ Included here |
i2b2-2006 | Medical | DUA | Uzuner et al., 2007 | http://www.i2b2.org |
i2b2-2014 | Medical | DUA | Stubbs et al., 2015 | http://www.i2b2.org |
CADEC | Medical | CSIRO | Karimi et al., 2015 | http://data.csiro.au/ |
AnEM | Anatomical | CC-BY-SA 3.0 | Ohta et al., 2012 | ✔ Included here |
MITRestaurant | Queries | None | Liu et al., 2013a | http://groups.csail.mit.edu/sls/ |
MITMovie | Queries | None | Liu et al., 2013b | http://groups.csail.mit.edu/sls/ |
MalwareTextDB | Malware | None | Lim et al., 2017 | http://www.statnlp.org/ |
re3d | Defense | Several (*1) | DSTL, 2017 | ✔ Included here |
SEC-filings | Finance | CC-BY 3.0 | Alvarado et al., 2015 | ✔ Included here |
Assembly | Robotics | X | Costa et al., 2017 | X |
Notes on licenses:
(1) re3d ("Relationship and Entity Extraction Evaluation Dataset") contains several datasets, with different licenses. These are:
- CC-BY-SA 3.0 (Wikipedia dataset)
- CC BY-NC 3.0 (BBC_Online dataset)
- CC BY 3.0 AU (Australian_Department_of_Foreign_Affairs dataset)
- public domain (US_State_Department dataset, CENTCOM dataset)
- UK Open Government Licence v3.0 (UK_Government dataset)
- Delegation_of_the_European_Union_to_Syria: see https://eeas.europa.eu/delegations/syria/8157/legal-notice_en
- GUM 3.1.0 comprises three datasets, with licenses CC-BY 3.0, CC-BY-SA 3.0 and CC-BY-NC-SA 3.0. The annotations are licensed under CC-BY 4.0.
More detailed license information for each dataset can be found in the corresponding subdirectory.
Later ... - Tabassum et al., Code and Named Entity Recognition in StackOverflow https://cocoxu.github.io/publications/ACL2020_stackoverflow_NER.pdf - LitBank: https://github.com/dbamman/litbank (Bamman, Popat and Shen, An Annotated Dataset of Literary Entities, NAACL 2019) - NNE: A Dataset for Nested Named Entity Recognition in English Newswire, 2019 https://github.com/nickyringland/nested_named_entities - Mars Target Encyclopedia - LPSC abstracts labeled data set: https://zenodo.org/record/1048419#.W5a2CBwnZhE - Best Buy queries: https://www.kaggle.com/dataturks/best-buy-ecommerce-ner-dataset/home - Resume entities for NER: https://www.kaggle.com/dataturks/resume-entities-for-ner/home
- HeiNER: http://heiner.cl.uni-heidelberg.de/index.shtml
- NECKAr: https://event.ifi.uni-heidelberg.de/?page_id=532#Wikidata_NE_dataset
- English-Spanish tweets (CALCS 2018): https://code-switching.github.io/2018/ ; https://code-switching.github.io/2018/files/spa-eng/Release.zip ; http://www.aclweb.org/anthology/W18-3219
- Arabic-Egyptian tweets (CALCS 2018): https://code-switching.github.io/2018/ ; https://code-switching.github.io/2018/files/msa-egy/ArabicTweetsTokenAssigner.zip ; http://www.aclweb.org/anthology/W18-3219
- Hindi-English social media text: https://github.com/SilentFlame/Named-Entity-Recognition ; http://aclweb.org/anthology/W18-2405
- EMNLP 2014 Shared Task - Code-Switched Tweets (Nepali-English, Spanish-English, Mandarin-English, Arabic-Arabic dialects): http://emnlp2014.org/workshops/CodeSwitch/call.html
- CoNLL 2003 (English, German): https://www.clips.uantwerpen.be/conll2003/ner/
- GermEval 2014: https://sites.google.com/site/germeval2014ner/data
- Tübingen Treebank of Written German (TüBa-D/Z): http://www.sfs.uni-tuebingen.de/en/ascl/resources/corpora/tueba-dz.html
- Europeana Newspapers (Dutch, French, German): https://github.com/EuropeanaNewspapers/ner-corpora ; http://lab.kb.nl/dataset/europeana-newspapers-ner#access
- German EUROPARL transcripts (subset): https://nlpado.de/~sebastian/software/ner_german.shtml
- Named Entity Model for German, Politics (NEMGP): https://www.thomas-zastrow.de/nlp/
- WikiNER: https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500
- DFKI SmartData Corpus (geo-entities): https://dfki-lt-re-group.bitbucket.io/smartdata-corpus/ (A German Corpus for Fine-Grained Named Entity Recognition and Relation Extraction of Traffic and Industry Events. Martin Schiersch, Veselina Mironova, Maximilian Schmitt, Philippe Thomas, Aleksandra Gabryszak, Leonhard Hennig. Proceedings of LREC, 2018)
- DBpedia abstract corpus (English, German, Dutch, French, Italian, Japanese): http://downloads.dbpedia.org/2015-04/ext/nlp/abstracts/
- DAWT dataset - Densely Annotated Wikipedia Texts across multiple languages (English, Spanish, French, Italian, German, Arabic): https://github.com/klout/opendata/tree/master/wiki_annotation
- Elena Leitner, Georg Rehm, Juli ́an Moreno-Schneider, A Dataset of German Legal Documents for Named Entity Recognition, LREC 2020: http://georg-re.hm/pdf/LREC-2020-Leitner-et-al-preprint.pdf ; Data: https://github.com/elenanereiss/Legal-Entity-Recognition
- CoNLL 2002 (Spanish, Dutch): https://www.clips.uantwerpen.be/conll2002/ner/
- Europeana Newspapers (Dutch, French, German): https://github.com/EuropeanaNewspapers/ner-corpora ; http://lab.kb.nl/dataset/europeana-newspapers-ner#access
- MEANTIME Corpus (Parallel corpus: English, Spanish, Italian, Dutch): http://www.newsreader-project.eu/results/data/wikinews/
- WikiNER: https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500
- DBpedia abstract corpus (English, German, Dutch, French, Italian, Japanese): http://downloads.dbpedia.org/2015-04/ext/nlp/abstracts/
- Dutch parliamentary documents 2015-2016, from 1848.nl (Jonkers, Named Entity Recognition on Dutch Parliamentary Documents using Frog, thesis, University of Amsterdam, 2016): https://github.com/Poezedoez/NER/blob/master/Code/data/lobby/golden_standard
- SONAR 1 - Desmet and Hoste, Fine-grained Dutch named entity recognition, 2014 (hierarchy of classes)
- Corpus-SONAR books and Corpus Gutenberg Dutch: http://blog.namescape.nl/?page_id=85 ; http://portal.clarin.nl/node/1940
- NCHLT Afrikaans Named Entity Annotated Corpus: https://repo.sadilar.org/handle/20.500.12185/299
- CoNLL 2002 (Spanish, Dutch): https://www.clips.uantwerpen.be/conll2002/ner/
- AnCora (Spanish, Catalan): http://clic.ub.edu/corpus/en
- DEFT Spanish Treebank (LDC2018T01): https://catalog.ldc.upenn.edu/LDC2018T01
- PANACEA (LAB): http://panacea-lr.eu/en/info-for-researchers/data-sets/dependency-parsed-corpora/dependency-lab-es
- PANACEA (ENV): http://panacea-lr.eu/en/info-for-researchers/data-sets/dependency-parsed-corpora/dependency-env-es
- MEANTIME Corpus (Parallel corpus: English, Spanish, Italian, Dutch): http://www.newsreader-project.eu/results/data/wikinews/
- ACE 2007 (Spanish and Arabic): https://catalog.ldc.upenn.edu/LDC2014T18
- WikiNER: https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500
- http://www.grupolys.org/~marcos/pub/lrec16.tar.bz2 (used in "Incorporating Lexico-semantic Heuristics into Coreference Resolution Sieves for Named Entity Recognition at Document-level")
- Multilingual corpora with coreferential annotation of person entities (Spanish, Galician, Portuguese): http://gramatica.usc.es/~marcos/lrec.tar.bz2
- DrugSemantics Gold Standard (Moreno et al., DrugSemantics: A corpus for Named Entity Recognition in Spanish Summaries of Product Characteristics, 2017): https://data.mendeley.com/datasets/fwc7jrc5jr/1
- DBpedia abstract corpus (English, German, Dutch, French, Italian, Japanese): http://downloads.dbpedia.org/2015-04/ext/nlp/abstracts/
- DAWT dataset - Densely Annotated Wikipedia Texts across multiple languages (English, Spanish, French, Italian, German, Arabic): https://github.com/klout/opendata/tree/master/wiki_annotation
- CANTEMIST (CANcer TExt Mining Shared Task – tumor named entity recognition) - named entity recognition of a critical type of concept related to cancer, namely tumor morphology in Spanish medical texts: https://temu.bsc.es/cantemist/
- AnCora (Spanish, Catalan): http://clic.ub.edu/corpus/en
- Galician NER corpus: https://gramatica.usc.es/~marcos/resources/corpus_gal_nec.txt.gz
- Multilingual corpora with coreferential annotation of person entities (Spanish, Galician, Portuguese): http://gramatica.usc.es/~marcos/lrec.tar.bz2
- Basque Named Entities Corpus (EIEC): http://ixa.eus/node/4486?language=en
- Basque Disambiguated Named Entities Corpus (EDIEC): http://ixa.si.ehu.es/node/4485?language=en
- Egunkaria 2000 corpus (383 newswire texts), mentioned in http://qtleap.eu/wp-content/uploads/2014/04/QTLEAP-2013-D5.1.pdf
- HAREM: https://www.linguateca.pt/aval_conjunta/HAREM/harem_ing.html
- CINTIL corpus: http://cintil.ul.pt/cintilfeatures.html#corpus
- WikiNER: https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500
- Multilingual corpora with coreferential annotation of person entities (Spanish, Galician, Portuguese): http://gramatica.usc.es/~marcos/lrec.tar.bz2
- Bosque 8.0 EAGLES format: https://gramatica.usc.es/~marcos/resources/corpora_FLpt.tgz
- LeNER-Br (Brazilian legal documents): https://cic.unb.br/~teodecampos/LeNER-Br/
- Paramopama: a Brazilian-Portuguese Corpus for Named Entity Recognition
- ESTER: http://catalogue.elra.info/en-us/repository/browse/ELRA-S0241/
- ESTER 2: http://catalogue.elra.info/en-us/repository/browse/ELRA-S0338/
- ETAPE: http://catalogue.elra.info/en-us/repository/browse/ELRA-E0046/
- Europeana Newspapers (Dutch, French, German): https://github.com/EuropeanaNewspapers/ner-corpora ; http://lab.kb.nl/dataset/europeana-newspapers-ner#access
- QUAERO French Medical Corpus: https://quaerofrenchmed.limsi.fr/
- Quaero Broadcast News Extended Named Entity Corpus: http://catalog.elra.info/en-us/repository/browse/ELRA-S0349/
- Quaero Old Press Extended Named Entity corpus: http://catalog.elra.info/en-us/repository/browse/ELRA-W0073/
- WikiNER: https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500
- DBpedia abstract corpus (English, German, Dutch, French, Italian, Japanese): http://downloads.dbpedia.org/2015-04/ext/nlp/abstracts/
- DAWT dataset - Densely Annotated Wikipedia Texts across multiple languages (English, Spanish, French, Italian, German, Arabic): https://github.com/klout/opendata/tree/master/wiki_annotation
- CAp 2017 - (Twitter data), Lopez et al., CAp 2017 challenge: Twitter Named Entity Recognition, 2017: http://cap2017.imag.fr/competition.html
- Evalita: http://www.evalita.it/2009/tasks/entity
- MEANTIME Corpus (Parallel corpus: English, Spanish, Italian, Dutch): http://www.newsreader-project.eu/results/data/wikinews/
- PANACEA (ENV): http://panacea-lr.eu/en/info-for-researchers/data-sets/dependency-parsed-corpora/dependency-env-it
- PANACEA (LAB): http://panacea-lr.eu/en/info-for-researchers/data-sets/dependency-parsed-corpora/dependency-lab-it
- WikiNER: https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500
- DBpedia abstract corpus (English, German, Dutch, French, Italian, Japanese): http://downloads.dbpedia.org/2015-04/ext/nlp/abstracts/
- DAWT dataset - Densely Annotated Wikipedia Texts across multiple languages (English, Spanish, French, Italian, German, Arabic): https://github.com/klout/opendata/tree/master/wiki_annotation
- RONEC (Dumitrescu and Avram, Introducing RONEC - the Romanian Named Entity Corpus. LREC 2020). Paper: https://arxiv.org/pdf/1909.01247.pdf Data: https://github.com/dumitrescustefan/ronec
- Romanian journalistic corpus (ROCO): http://metashare.elda.org/repository/browse/romanian-journalistic-corpus-roco/038baa80dc7311e5aa0b00237df3e3583781d7c0f2084057aa018a2d63d987e9/
- Romanian Balanced Corpus (ROMBAC): http://metashare.elda.org/repository/browse/romanian-balanced-corpus-rombac/0a7dd85edc7311e5aa0b00237df3e35873a0d662435d42dd94fba48c29dc0065/
- PANACEA (ENV): http://panacea-lr.eu/en/info-for-researchers/data-sets/dependency-parsed-corpora/dependency-env-el
- PANACEA (LAB): http://panacea-lr.eu/en/info-for-researchers/data-sets/dependency-parsed-corpora/dependency-lab-el
- Hungarian Named Entity Corpora: http://rgai.inf.u-szeged.hu/index.php?lang=en&page=corpus_ne
- hunNERwiki: http://hlt.sztaki.hu/resources/hunnerwiki.html
- Czech Named Entity Corpus: http://ufal.mff.cuni.cz/cnec
- BSNLP 2017 (Croatian, Czech, Polish, Russian, Slovak, Slovene, Ukrainian): http://bsnlp-2017.cs.helsinki.fi/shared_task_results.html
- CzEng 1.0 (Parallel corpus: Czech-English): http://ufal.mff.cuni.cz/czeng/czeng10
- The Polish Sejm Corpus: http://clip.ipipan.waw.pl/PSC
- BSNLP 2017 (Croatian, Czech, Polish, Russian, Slovak, Slovene, Ukrainian): http://bsnlp-2017.cs.helsinki.fi/shared_task_results.html
- Polish Coreference Corpus: http://zil.ipipan.waw.pl/PolishCoreferenceCorpus
- WikiNER: https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500
- Corpus of Economic News (CEN Corpus): http://www.nlp.pwr.wroc.pl/narzedzia-i-zasoby/zasoby/cen
- KPWr (Korpus Języka Polskiego Politechniki Wrocławskiej/Polish Corpus of Wrocław University of Technology): http://plwordnet.pwr.wroc.pl/index.php?option=com_content&view=article&id=35&Itemid=181&lang=pl ; http://plwordnet.pwr.wroc.pl/attachments/article/35/kpwr-1.1.7z (Broda et al., KPWr: Towards a Free Corpus of Polish, 2012)
- hr500k 1.0: http://hdl.handle.net/11356/1183
- BSNLP 2017 (Croatian, Czech, Polish, Russian, Slovak, Slovene, Ukrainian): http://bsnlp-2017.cs.helsinki.fi/shared_task_results.html
- ReLDI-NormTagNER-hr (Croatian tweets): http://hdl.handle.net/11356/1170
- BSNLP 2017 (Croatian, Czech, Polish, Russian, Slovak, Slovene, Ukrainian): http://bsnlp-2017.cs.helsinki.fi/shared_task_results.html
- Slovak Categorized News Corpus: https://nlp.web.tuke.sk/pages/categorizednews
- BSNLP 2017 (Croatian, Czech, Polish, Russian, Slovak, Slovene, Ukrainian): http://bsnlp-2017.cs.helsinki.fi/shared_task_results.html
- ssj500k: http://www.slovenscina.eu/tehnologije/ucni-korpus ; http://eng.slovenscina.eu/tehnologije/ucni-korpus ; https://www.clarin.si/repository/xmlui/handle/11356/1029 ; NOTE: for v 2.2 see: http://hdl.handle.net/11356/1210
- Slovene news: http://zitnik.si/mediawiki/index.php?title=Datasets#Slovene_news ; http://zitnik.si/mediawiki/images/7/7d/Rtvslo_dec2011.tsv ; http://zitnik.si/mediawiki/images/5/5e/Rtvslo_dec2011_v2.tsv
- Janes-Tag 2.0 (social media text) https://www.clarin.si/repository/xmlui/handle/11356/1123 ; see also: Fišer et al., The Janes project: language resources and tools for Slovene user generated content, 2018.
- BSNLP 2017 (Croatian, Czech, Polish, Russian, Slovak, Slovene, Ukrainian): http://bsnlp-2017.cs.helsinki.fi/shared_task_results.html
- Ukrainian Brown NER Corpus: https://github.com/lang-uk/ner-uk ; http://lang.org.ua/en/corpora/
- SETimes.SR - http://hdl.handle.net/11356/1200
- Named Entities evaluation corpus for Serbian: http://www.korpus.matf.bg.ac.rs/SrpNEval/
- ReLDI-NormTagNER-sr (Serbian tweets): http://hdl.handle.net/11356/1171
- BulTreeBank (BTB)
- MIM-GOLD-NER (Ingólfsdóttir, Svanhvít Lilja, Sigurjón Þorsteinsson, and Hrafn Loftsson. "Towards High Accuracy Named Entity Recognition for Icelandic." Proceedings of the 22nd Nordic Conference on Computational Linguistics. 2019): http://www.malfong.is/index.php?pg=mim_gold_ner
- DaNE: Hvingelby et al., [DaNE: A Named Entity Resource for Danish.](http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.565.pdf), LREC 2020: https://github.com/alexandrainst/danlp/
- Danish Propbank (DPB): http://catalog.elra.info/en-us/repository/browse/ELRA-W0117/
- Arboretum treebank: http://catalog.elra.info/en-us/repository/browse/ELRA-W0084/
- Bjarte Johansen, Named-Entity Recognition for Norwegian, Proceedings of the 22nd Nordic Conference on Computational Linguistics. 2019 (https://www.aclweb.org/anthology/W19-6123.pdf) Data: https://github.com/ljos/navnkjenner
- Fredrik Jørgensen et al., NorNE: Annotating Named Entities for Norwegian, 2019 (https://arxiv.org/pdf/1911.12146.pdf). Data: https://github.com/ltgoslo/norne/ ; https://www.nb.no/sprakbanken/show?serial=oai%3Anb.no%3Asbr-49
- Stockholm Internet Corpus: https://www.ling.su.se/english/nlp/corpora-and-resources/sic
- SUC 3.0: https://spraakbanken.gu.se/eng/resource/suc3
- Swedish manually annotated NER: https://github.com/klintan/swedish-ner-corpus/
- Medical wikipedia data (Almgren et al., Named Entity Recognition in Swedish Health Records with Character-Based Deep Bidirectional LSTMs, 2016): https://github.com/olofmogren/biomedical-ner-data-swedish
- data sets for Finnish Named Entity Recoginition: https://github.com/mpsilfve/finer-data
- Estonian NER corpus: https://metashare.ut.ee/repository/browse/estonian-ner-corpus/88d030c0acde11e2a6e4005056b40024f1def472ed254e77a8952e1003d9f81e/
- https://github.com/accurat-toolkit/TildeNER/tree/master/TEST (Pinnis, Latvian and Lithuanian Named Entity Recognition with TildeNER, LREC 2012)
- Training data for the LV Tagger: https://github.com/PeterisP/LVTagger/tree/master/NerTrainingData
- K̈ucuk and Can, A Tweet Dataset Annotated for Named Entity Recognition and Stance Detection, 2019: https://github.com/dkucuk/Tweet-Dataset-NER-SD
- K̈ucuk et al., Named Entity Recognition on Turkish Tweets: http://optima.jrc.it/Resources/2014_JRC_Twitter_TR_NER-dataset.zip
- English/Turkish Wikipedia Named-Entity Recognition and Text Categorization Dataset (http://arxiv.org/abs/1702.02363): https://data.mendeley.com/datasets/cdcztymf4k/1
- Uyghur Named Entity Relation corpus: https://github.com/kaharjan/UyNeRel (Abiderexiti et al., Annotation Schemes for Constructing Uyghur Named Entity Relation Corpus. IALP 2016)
- pioNER (gold-standard and silver-standard datasets): https://github.com/ispras-texterra/pioner (Ghukasyan et al., pioNER: Datasets and Baselines for Armenian Named Entity Recognition, 2018)
- The Coptic Universal Dependency Treebank: https://github.com/UniversalDependencies/UD_Coptic-Scriptorium/tree/dev (see also https://copticscriptorium.org/treebank.html). This contains 46,000 tokens of nested (non-)named and Wikified entities from Sahidic Coptic texts.
- SAY corpus (see "Named entity recognition for Amharic using deep learning"): https://github.com/geezorg/data/tree/master/amharic/tagged/nmsu-say ; http://data.geez.org/
- AQMAR Arabic Wikipedia Named Entity Corpus: http://www.cs.cmu.edu/~ark/ArabicNER/
- NE3L named entities Arabic corpus (Arabic, Chinese, Russian): http://catalog.elra.info/en-us/repository/browse/ELRA-W0078/
- REFLEX Entity Translation (Parallel corpus: English, Arabic, Chinese): https://catalog.ldc.upenn.edu/LDC2009T11
- ANERCorp: http://users.dsic.upv.es/~ybenajiba/downloads.html (See also: http://alias-i.com/lingpipe/demos/tutorial/ne/read-me.html)
- ACE 2003 (English, Chinese, Arabic): https://catalog.ldc.upenn.edu/LDC2004T09
- ACE 2004 (English, Chinese, Arabic): https://catalog.ldc.upenn.edu/LDC2005T09
- ACE 2005 (English, Chinese, Arabic): https://catalog.ldc.upenn.edu/LDC2006T06
- ACE 2007 (Spanish and Arabic): https://catalog.ldc.upenn.edu/LDC2014T18
- OntoNotes 5 (English, Arabic, Chinese): https://catalog.ldc.upenn.edu/LDC2013T19
- DAWT dataset - Densely Annotated Wikipedia Texts across multiple languages (English, Spanish, French, Italian, German, Arabic): https://github.com/klout/opendata/tree/master/wiki_annotation
- ArmanPersoNERCorpus: http://islrn.org/resources/399-379-640-828-6/ ; https://github.com/HaniehP/PersianNER
- IJCNLP 2008 SSEAL: http://ltrc.iiit.ac.in/ner-ssea-08/index.cgi?topic=5
- UNER Dataset (Khan et al., Named Entity Dataset for Urdu Named Entity Recognition Task, 2016). Available at http://www.iiu.edu.pk/?page_id=5181
- MK-PUCIT: https://www.dropbox.com/sh/1ivw7ykm2tugg94/AAB9t5wnN7FynESpo7TjJW8la ; see: Kanwal et al., Urdu Named Entity Recognition: Corpus Generationand Deep Learning Applications, 2019
- Hindi Health Dataset: https://www.kaggle.com/aijain/hindi-health-dataset/home
- FIRE 2015, ESM-IL (English, Hindi, Tamil, Malayalam) : http://au-kbc.org/nlp/ESM-FIRE2015/#traincorpus
- FIRE NER 2013 (English, Hindi, Tamil, Malayalam, Bengali): http://au-kbc.org/nlp/NER-FIRE2013/
- IJCNLP 2008 SSEAL: http://ltrc.iiit.ac.in/ner-ssea-08/index.cgi?topic=5
- FIRE NER 2013 (English, Hindi, Tamil, Malayalam, Bengali): http://au-kbc.org/nlp/NER-FIRE2013/
- IJCNLP 2008 SSEAL: http://ltrc.iiit.ac.in/ner-ssea-08/index.cgi?topic=5
- NER_Telugu: https://github.com/anikethjr/NER_Telugu
- IJCNLP 2008 SSEAL: http://ltrc.iiit.ac.in/ner-ssea-08/index.cgi?topic=5
- Named Entity Annotated Corpora for Telugu: http://www.tdil-dc.in/index.php?option=com_download&task=showresourceDetails&toolid=982&lang=en
- Named Entity Annotated Corpora for Marathi: http://www.tdil-dc.in/index.php?option=com_download&task=showresourceDetails&toolid=979&lang=en
- Named Entity Annotated Corpora for Punjabi: http://www.tdil-dc.in/index.php?option=com_download&task=showresourceDetails&toolid=980&lang=en
- FIRE 2015, ESM-IL (English, Hindi, Tamil, Malayalam) : http://au-kbc.org/nlp/ESM-FIRE2015/#traincorpus
- FIRE NER 2013 (English, Hindi, Tamil, Malayalam, Bengali): http://au-kbc.org/nlp/NER-FIRE2013/
- FIRE 2015, ESM-IL (English, Hindi, Tamil, Malayalam) : http://au-kbc.org/nlp/ESM-FIRE2015/#traincorpus
- FIRE NER 2013 (English, Hindi, Tamil, Malayalam, Bengali): http://au-kbc.org/nlp/NER-FIRE2013/
- IJCNLP 2008 SSEAL: http://ltrc.iiit.ac.in/ner-ssea-08/index.cgi?topic=5
- LORELEI (LDC2018E57)
- thai-named-entity-recognition-data: https://github.com/PyThaiNLP/thai-named-entity-recognition-data
- Thai named entity corpora: http://pioneer.chula.ac.th/~awirote/resources/corpora--data.html ; http://pioneer.chula.ac.th/~awirote/Data-Nutcha.zip ; http://pioneer.chula.ac.th/~awirote/Data-Sasiwimon.zip ; http://pioneer.chula.ac.th/~awirote/Data-Nattadaporn.zip
- IDENTIC: http://metashare.elda.org/repository/browse/identic/fed3fada7ef111e5aa3b001dd8b71c66c98eee36eabd42f18ffd9a95da9104cc/
- https://github.com/yohanesgultom/nlp-experiments/tree/master/data/ner
- VLSP 2016: http://vlsp.org.vn/resources-vlsp2016 ; https://github.com/undertheseanlp/ner
- VLSP 2018: http://vlsp.org.vn/resources-vlsp2018 ; https://github.com/undertheseanlp/ner
- IREX: https://nlp.cs.nyu.edu/irex/Package/
- MET-2 (Japanese, Chinese): https://www-nlpir.nist.gov/related_projects/muc/
- BCCWJ Basic NE corpus: https://sites.google.com/site/projectnextnlpne/en (Iwakura et al., Constructing a Japanese Basic Named Entity Corpus of Various Genres, NEWS 2016)
- DBpedia abstract corpus (English, German, Dutch, French, Italian, Japanese): http://downloads.dbpedia.org/2015-04/ext/nlp/abstracts/
- Data from: Mai et al., An Empirical Study on Fine-Grained Named Entity Recognition, COLING 2018 (English, Japanese): https://fgner.alt.ai/duc/ene/testsets/comp/
- National Institute of Korean Language (ROK) - NER Corpus: https://github.com/digitalprk/KoreaNER ; https://ithub.korean.go.kr/user/total/referenceView.do?boardSeq=5&articleSeq=118&boardGb=T&isInsUpd&boardType=CORPUS
- ACE 2003 (English, Chinese, Arabic): https://catalog.ldc.upenn.edu/LDC2004T09
- ACE 2004 (English, Chinese, Arabic): https://catalog.ldc.upenn.edu/LDC2005T09
- ACE 2005 (English, Chinese, Arabic): https://catalog.ldc.upenn.edu/LDC2006T06
- OntoNotes 5 (English, Arabic, Chinese): https://catalog.ldc.upenn.edu/LDC2013T19
- MET-2 (Japanese, Chinese): https://www-nlpir.nist.gov/related_projects/muc/
- REFLEX Entity Translation (Parallel corpus: English, Arabic, Chinese): https://catalog.ldc.upenn.edu/LDC2009T11
- NE3L named entities Chinese corpus (Arabic, Chinese, Russian): http://catalogue.elra.info/en-us/repository/browse/ELRA-W0079/
- Original Short-Message Data Collation I in Chinese (named entities): http://catalog.elra.info/en-us/repository/browse/ELRA-W0045_04/
- Original Short-Message Data Collation II in Chinese (named entities): http://catalog.elra.info/en-us/repository/browse/ELRA-W0045_08/
- ERE DEFT Corpora (Parallel corpus: English, Chinese): Mott et al., Parallel Chinese-English Entities, Relations and Events Corpora, 2016 (LDC2015E78 , LDC2014E114)
- Chinese Weibo: DEFT ERE style annotations for named and nominal mentions on Chinese social media (Weibo): https://github.com/hltcoe/golden-horse
- BSNLP 2017 (Croatian, Czech, Polish, Russian, Slovak, Slovene, Ukrainian): http://bsnlp-2017.cs.helsinki.fi/shared_task_results.html
- NE3L named entities Russian corpus (Arabic, Chinese, Russian): https://catalog.elra.info/en-us/repository/browse/ELRA-W0080/
- WikiNER: https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500
- factRuEval-2016: https://github.com/dialogue-evaluation/factRuEval-2016
- RuREBus 2020 (Russian Relation Extraction for Business) corpus https://github.com/dialogue-evaluation/RuREBus
- GV-Yorùbá-NER. Data: https://github.com/ajesujoba/YorubaTwi-Embedding/tree/master/Yoruba/Yor%C3%B9b%C3%A1-NER ; Data statement: https://drive.google.com/file/d/177xu-O2FTJ7VJQ-0ohCWjVd1qu61Tvml/view Paper: Jesujoba O Alabi, Kwabena Amponsah-Kaakyire, David I Adelani, and Cristina Espãna-Bonet. Massive vs. curated word embeddings for low-resourced languages. the case of Yorùbá and Twi. In LREC, 2020 (https://arxiv.org/abs/1912.02481)
- Helsinki Corpus of Swahili 2.0 (HCS 2.0) Annotated Version: http://metashare.csc.fi/repository/browse/helsinki-corpus-of-swahili-20-hcs-20-annotated-version/232c1910b9eb11e5915e005056be118e59fb2e920f1f4c0cafc94915fc6f5cac/ See: Shah et al., 2010. SYNERGY: A Named Entity Recognition System for Resource-scarce Languages such as Swahili using Online Machine Translation
- NCHLT isiNdebele Named Entity Annotated Corpus: https://repo.sadilar.org/handle/20.500.12185/306
- NCHLT isiXhosa Named Entity Annotated Corpus: https://repo.sadilar.org/handle/20.500.12185/312
- NCHLT isiZulu Named Entity Annotated Corpus: https://repo.sadilar.org/handle/20.500.12185/319
- NCHLT Sepedi Named Entity Annotated Corpus: https://repo.sadilar.org/handle/20.500.12185/328
- NCHLT Sesotho Named Entity Annotated Corpus: https://repo.sadilar.org/handle/20.500.12185/334
- NCHLT Setswana Named Entity Annotated Corpus: https://repo.sadilar.org/handle/20.500.12185/341
- NCHLT Siswati Named Entity Annotated Corpus: https://repo.sadilar.org/handle/20.500.12185/346
- NCHLT Tshivenda Named Entity Annotated Corpus: https://repo.sadilar.org/handle/20.500.12185/355
- NCHLT Xitsonga Named Entity Annotated Corpus: https://repo.sadilar.org/handle/20.500.12185/362
- Herodotos Project: https://github.com/alexerdmann/Herodotos_Project_Annotation
A long list can be found here: http://damien.nouvels.net/resourcesen/corpora.html
[Alvarado et al., 2015] Alvarado, Julio Cesar Salinas, Karin Verspoor, and Timothy Baldwin. Domain adaption of named entity recognition to support credit risk assessment. In Proceedings of the Australasian Language Technology Association Workshop 2015, pp. 84-90. 2015. Accessed: August 2018.
[Balasuriya et al., 2009] Balasuriya, Dominic, Nicky Ringland, Joel Nothman, Tara Murphy, and James R. Curran. Named entity recognition in wikipedia. In Proceedings of the 2009 Workshop on The People's Web Meets NLP: Collaboratively Constructed Semantic Resources, pp. 10-18. Association for Computational Linguistics, 2009
[Bos et al., 2017] Bos, Johan, Valerio Basile, Kilian Evang, Noortje J. Venhuizen, and Johannes Bjerva. The Groningen meaning bank. In Handbook of linguistic annotation, pp. 463-496. Springer, Dordrecht, 2017.
[Derczynski et al., 2016] Derczynski, Leon, Kalina Bontcheva, and Ian Roberts. Broad twitter corpus: A diverse named entity recognition resource. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 1169-1179. 2016. Available at: https://github.com/GateNLP/broad_twitter_corpus Accessed: August 2018.
[Derczynski et al., 2017] Leon Derczynski, Eric Nichols, Marieke van Erp, Nut Limsopatham (2017) Results of the WNUT2017 Shared Task on Novel and Emerging Entity Recognition, in Proceedings of the 3rd Workshop on Noisy, User-generated Text. Available at: https://noisy-text.github.io/2017/emerging-rare-entities.html
[DSTL, 2017] Defence Science and Technology Laboratory. 2017. Relationship and Entity Extraction Evaluation Dataset. https://github.com/dstl/re3d. Accessed: January 2018.
[Grishman and Sundheim, 1996] Ralph Grishman and Beth Sundheim. 1996. Message understanding conference- 6: A brief history. In COLING 1996 Volume 1: The 16th International Conference on Computational Linguistics.
[Karimi et al., 2015] Sarvnaz Karimi, Alejandro Metke-Jimenez, Madonna Kemp, and Chen Wang. 2015. Cadec: A corpus of adverse drug event annotations. Journal of biomedical informatics, 55:73-81. Available at https://data.csiro.au Accessed: November 2017.
[Lim et al., 2017] Lim, Swee Kiat, Aldrian Obaja Muis, Wei Lu, and Chen Hui Ong. MalwareTextDB: A database for annotated malware articles. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 1557-1567. 2017.
[Liu et al., 2013a] Jingjing Liu, Panupong Pasupat, Scott Cyphers, and Jim Glass. 2013. Asgard: A portable architecture for multilingual dialogue systems. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pages 8386-8390. IEEE. Available at https://groups.csail.mit.edu/sls/downloads/restaurant/ Accessed: January 2018
[Liu et al., 2013b] Jingjing Liu, Panupong Pasupat, Yining Wang, Scott Cyphers, and Jim Glass. 2013. Query understanding enhanced by hierarchical parsing structures. In Automatic Speech Recognition and Understanding (ASRU), 2013 IEEE Workshop on, pages 72-77. IEEE. Available at https://groups.csail.mit.edu/sls/downloads/movie/ We used the trivia10k13 portion. Accessed: January 2018
[NIST, 1999 IE-ER] NIST. 1999. Information Extraction - Entity Recognition Evaluation. http://www.nist.gov/speech/tests/ieer/er_99/er_99.htm. The newswire development test data only (included in the NLTK package).
[Ohta et al., 2012] Tomoko Ohta, Sampo Pyysalo, Jun'ichi Tsujii and Sophia Ananiadou. 2012. Open-domain Anatomical Entity Mention Detection. In Proceedings of ACL 2012 Workshop on Detecting Structure in Scholarly Discourse (DSSD), pp. 27-36. Available at: http://www.nactem.ac.uk/anatomy/ and https://github.com/openbiocorpora/anem Accessed: November 2017.
[Ritter et al., 2011] Alan Ritter, Sam Clark, Mausam, and Oren Etzioni. 2011. Named entity recognition in tweets: An experimental study. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 1524-1534, Edinburgh, Scotland, UK., July. Association for Computational Linguistics. Accessed January 2018.
[Sang and Meulder, 2003] Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003 shared task: Languageindependent named entity recognition. In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003.
[Stubbs et al., 2015] Amber Stubbs and Ozlem Uzuner. 2015. Annotating longitudinal clinical narratives for de-identification: The 2014 i2b2/UTHealth corpus. Journal of biomedical informatics, 58:S20-S29. Available at https://www.i2b2.org/NLP/DataSets/ Accessed: February 2018.
[Uzuner et al., 2007] Ozlem Uzuner, Yuan Luo, and Peter Szolovits. 2007. Evaluating the state-of-the-art in automatic de-identification. Journal of the American Medical Informatics Association, 14(5):550-563. Available at https://www.i2b2.org/NLP/DataSets/ Accessed: February 2018.
[Weischedel and Brunstein, 2005] Ralph Weischedel and Ada Brunstein. 2005. BBN pronoun coreference and entity type corpus. Linguistic Data Consortium, Philadelphia.
[Weischedel et al., 2013] Weischedel, Ralph, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue et al. Ontonotes release 5.0 ldc2013t19. Linguistic Data Consortium, Philadelphia, PA (2013).
[Zeldes, 2017] Amir Zeldes. 2017. The GUM corpus: creating multilayer resources in the classroom. Language Resources and Evaluation, 51(3):581-612. Available at https://github.com/amir-zeldes/gum/tree/master/coref/tsv/ Accessed: November 2017.