Skip to content

abess-team/A-Splicing-Approach-to-Best-Subset-of-Groups-Selection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Group splicing numerical experiments

This repository contains scripts to run the synthetic datasets and real-world dataset analysis described in A Splicing Approach to Best Subset of Groups Selection.

Codes

  • Synthetic_dataset_analysis/Synthetic_dataset_analysis.R : R script used to run the synthetic datasets analysis.
  • Real-world_dataset_analysis/Real-world_dataset_analysis.R : R script used to run the real-world dataset analysis.
  • Real-world_dataset_analysis/trim32.rda : Dataset used in the real-world dataset analysis.
  • gomp/gomp.R : R interface of gomp.cpp.
  • gomp/gomp.cpp : C++ implementation of group orthogonal matching pursuit (GOMP).

Softwares

  • Group Lasso : R package grpreg (3.4.0).
  • Group MCP : R package grpreg (3.4.0).
  • GOMP : Implementation in R language with Rcpp modules.
  • Group Splicing : R package abess (0.4.0).

Citations

Please cite the following publications if you make use of the material here.

  • Yanhang Zhang, Junxian Zhu, Jin Zhu, and Xueqin Wang. A splicing approach to best subset of groups selection. INFORMS Journal on Computing, 35(1):104–119, 2023. doi: 10.1287/ijoc.2022.1241. URL https://doi.org/10.1287/ijoc.2022.1241.

  • Jin Zhu, Xueqin Wang, Liyuan Hu, Junhao Huang, Kangkang Jiang, Yanhang Zhang, Shiyun Lin and Junxian Zhu (2022). abess: A Fast Best-Subset Selection Library in Python and R. Journal of Machine Learning Research, 23(202), 1-7.

The corresponding BibteX entries:

@article{doi:10.1287/ijoc.2022.1241,
author = {Zhang, Yanhang and Zhu, Junxian and Zhu, Jin and Wang, Xueqin},
title = {A Splicing Approach to Best Subset of Groups Selection},
journal = {INFORMS Journal on Computing},
volume = {35},
number = {1},
pages = {104-119},
year = {2023},
doi = {10.1287/ijoc.2022.1241},
URL = {https://doi.org/10.1287/ijoc.2022.1241},
eprint = { https://doi.org/10.1287/ijoc.2022.1241}
}

and

@article{JMLR:v23:21-1060,
  author  = {Jin Zhu and Xueqin Wang and Liyuan Hu and Junhao Huang and Kangkang Jiang and Yanhang Zhang and Shiyun Lin and Junxian Zhu},
  title   = {abess: A Fast Best-Subset Selection Library in Python and R},
  journal = {Journal of Machine Learning Research},
  year    = {2022},
  volume  = {23},
  number  = {202},
  pages   = {1--7},
  url     = {http://jmlr.org/papers/v23/21-1060.html}
}

Contact

Please direct questions and comments to the issues page.