-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #16 from mardikark-gslab/benchmarking
Benchmarking Datahub-Classify API
- Loading branch information
Showing
1 changed file
with
103 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
""" | ||
How to Run? | ||
$ cd datahub-classify/tests | ||
$ python infotypes_benchmarking.py | ||
""" | ||
|
||
|
||
import os | ||
import time | ||
|
||
import pandas as pd | ||
|
||
from datahub_classify.helper_classes import ColumnInfo, Metadata | ||
from datahub_classify.infotype_predictor import predict_infotypes | ||
from datahub_classify.reference_input import input1 as input_dict | ||
|
||
NUM_ROWS = 1000 | ||
current_wdr = os.path.dirname(os.path.abspath(__file__)) | ||
input_data_dir = os.path.join(current_wdr, "datasets") | ||
confidence_threshold = 0.6 | ||
infotypes_to_use = [ | ||
"Street_Address", | ||
"Gender", | ||
"Credit_Debit_Card_Number", | ||
"Email_Address", | ||
"Phone_Number", | ||
"Full_Name", | ||
"Age", | ||
"IBAN", | ||
"Vehicle_Identification_Number", | ||
"US_Social_Security_Number", | ||
"IP_Address_v4", | ||
"IP_Address_v6", | ||
"Swift_Code", | ||
"US_Driving_License_Number", | ||
] | ||
|
||
|
||
def get_public_data(input_data_path): | ||
dataset_dict = {} | ||
for root, dirs, files in os.walk(input_data_path): | ||
for i, filename in enumerate(files): | ||
if filename.endswith(".csv"): | ||
dataset_name = filename.replace(".csv", "") | ||
dataset_dict[dataset_name] = pd.read_csv(os.path.join(root, filename)) | ||
elif filename.endswith(".xlsx"): | ||
dataset_name = filename.replace(".xlsx", "") | ||
dataset_dict[dataset_name] = pd.read_excel(os.path.join(root, filename)) | ||
return dataset_dict | ||
|
||
|
||
def populate_column_info_list(public_data_list): | ||
column_info_list = [] | ||
actual_labels = [] | ||
for i, (dataset_name, data) in enumerate(public_data_list.items()): | ||
for col in data.columns: | ||
fields = { | ||
"Name": col, | ||
"Description": f"This column contains name of the {col}", | ||
"Datatype": "str", | ||
"Dataset_Name": dataset_name, | ||
} | ||
metadata = Metadata(fields) | ||
if len(data[col].dropna()) > 1000: | ||
values = data[col].dropna().values[:1000] | ||
else: | ||
values = data[col].dropna().values | ||
col_info = ColumnInfo(metadata, values) | ||
column_info_list.append(col_info) | ||
actual_labels.append(col) | ||
return column_info_list | ||
|
||
|
||
def get_predictions(public_data_list): | ||
result_df = pd.DataFrame() | ||
for i, (dataset_name, data) in enumerate(public_data_list.items()): | ||
print(f"================ Processing - {dataset_name} =========================") | ||
result_dict = {} | ||
data = data.head(NUM_ROWS) | ||
result_dict["dataset_name"] = dataset_name | ||
result_dict["num_rows"] = data.shape[0] | ||
result_dict["num_cols"] = data.shape[1] | ||
|
||
column_info_list = populate_column_info_list({dataset_name: data}) | ||
start_time = time.time() | ||
_ = predict_infotypes( | ||
column_info_list, confidence_threshold, input_dict, infotypes_to_use | ||
) | ||
end_time = time.time() | ||
result_dict["execution_time"] = end_time - start_time | ||
result_df = result_df.append(result_dict, ignore_index=True) | ||
return result_df | ||
|
||
|
||
if __name__ == "__main__": | ||
datasets = get_public_data(input_data_dir) | ||
result = get_predictions(datasets) | ||
result.to_csv( | ||
f"datahub_classify_execution_time_rows_{NUM_ROWS}.csv", header=True, index=False | ||
) | ||
print(result) | ||
print("======================") | ||
print(pd.read_csv(f"datahub_classify_execution_time_rows_{NUM_ROWS}.csv")) |