Skip to content
Maxim Yurkin edited this page Mar 22, 2023 · 13 revisions

Development of ADDA is mostly performed in the framework of scientific projects. In the following, a list of publications, relevant to different parts of ADDA, is presented. Although the manual provides a brief description of all ADDA functionality, we recommend citing the original papers listed below (containing more details) when you use the corresponding functions of ADDA. Please cite the manual only for those parts which are not published elsewhere.

General description

Yurkin M.A. and Hoekstra A.G. The discrete-dipole-approximation code ADDA: capabilities and known limitations, J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).

Specific aspects

OpenCL (GPU-accelerated) version

Huntemann M., Heygster G., and Hong G. Discrete dipole approximation simulations on GPUs using OpenCL – Application on cloud ice particles, J. Comput. Sci. 2, 262–271 (2011).

Sparse (non-FFT) mode

Leinonen J., Moisseev D., and Nousiainen T. Linking snowflake microstructure to multi-frequency radar observations, J. Geophys. Res.: Atmos. 118, 3259–3270 (2013).

Different implemented DDA formulations

Filtered coupled dipoles (FCD)

  • Piller N.B. and Martin O.J.F. Increasing the performance of the coupled-dipole approximation: A spectral approach, IEEE Trans. Antennas Propag. 46, 1126–1137 (1998).
  • Yurkin M.A., Min M., and Hoekstra A.G. Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived, Phys. Rev. E 82, 036703 (2010).

Integration of Green's tensor (IGT)

Particles much larger than the wavelength

Yurkin M.A., Maltsev V.P., and Hoekstra A.G. The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength, J. Quant. Spectrosc. Radiat. Transfer 106, 546–557 (2007).

Gold nanoparticles

Yurkin M.A., de Kanter D., and Hoekstra A.G. Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles, J. Nanophoton. 4, 041585 (2010).

Surface mode

Yurkin M.A. and Huntemann M. Rigorous and fast discrete dipole approximation for particles near a plane interface, J. Phys. Chem. C 119, 29088–29094 (2015).

Rectangular dipoles

Smunev D.A., Chaumet P.C., and Yurkin M.A. Rectangular dipoles in the discrete dipole approximation, J. Quant. Spectrosc. Radiat. Transfer 156, 67–79 (2015).

WKB approximation as initial guess

Inzhevatkin K.G. and Yurkin M.A. Uniform-over-size approximation of the internal fields for scatterers with low refractive-index contrast, J. Quant. Spectrosc. Radiat. Transfer 277, 107965 (2022).

Shapes

Axisymmetric

Gilev K.V., Eremina E., Yurkin M.A., and Maltsev V.P. Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells, Opt. Express 18, 5681–5690 (2010).

Bisphere

Schmidt K., Yurkin M.A., and Kahnert M. A case study on the reciprocity in light scattering computations, Opt. Express 20, 23253–23274 (2012).

Capsule

Hahn D.V., Limsui D., Joseph R.I., Baldwin K.C., Boggs N.T., Carr A.K., Carter C.C., Han T.S., and Thomas M.E. Shape characteristics of biological spores, SPIE Proceedings 6954, 69540W.

Chebyshev particle

Schmidt K., Yurkin M.A., and Kahnert M. A case study on the reciprocity in light scattering computations, Opt. Express 20, 23253–23274 (2012).

Coated spheres

Tyynelä J., Nousiainen T., Göke S., and Muinonen K. Modeling C-band single scattering properties of hydrometeors using discrete-dipole approximation and T-matrix method, J. Quant. Spectrosc. Radiat. Transfer 110, 1654–1664 (2009).

Cylinder

  • Schmidt K., Yurkin M.A., and Kahnert M. A case study on the reciprocity in light scattering computations, Opt. Express 20, 23253–23274 (2012).
  • Bi L., Yang P., and Kattawar G.W. Edge-effect contribution to the extinction of light by dielectric disks and cylindrical particles, Appl. Opt. 49, 4641–4646 (2010).

Cube (box)

Yurkin M.A. and Kahnert M. Light scattering by a cube: accuracy limits of the discrete dipole approximation and the T-matrix method, J. Quant. Spectrosc. Radiat. Transfer 123, 176–183 (2013).

Egg

Hahn D.V., Limsui D., Joseph R.I., Baldwin K.C., Boggs N.T., Carr A.K., Carter C.C., Han T.S., and Thomas M.E. Shape characteristics of biological spores, SPIE Proceedings 6954, 69540W.

Ellipsoid

Bi L., Yang P., Kattawar G.W., and Kahn R. Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes, Appl. Opt. 48, 114–126 (2009).

Red blood cell (RBC)

Yurkin M.A. Discrete dipole simulations of light scattering by blood cells, PhD thesis, University of Amsterdam (2007).

Granule generator

Yurkin M.A., Semyanov K.A., Maltsev V.P., and Hoekstra A.G. Discrimination of granulocyte subtypes from light scattering: theoretical analysis using a granulated sphere model, Opt. Express 15, 16561–16580 (2007).

Incident fields

Bessel beam

Glukhova S.A. and Yurkin M.A. Vector Bessel beams: General classification and scattering simulations, Phys. Rev. A 106, 033508 (2022).

Calculated quantities

Radiation forces

Hoekstra A.G., Frijlink M., Waters L.B.F.M., and Sloot P.M.A. Radiation forces in the discrete-dipole approximation, J. Opt. Soc. Am. A 18, 1944–1953 (2001).

Internal fields

Hoekstra A.G., Rahola J., and Sloot P.M.A. Accuracy of internal fields in volume integral equation simulations of light scattering, Appl. Opt. 37, 8482–8497 (1998).

Near fields

If you use near_field package see corresponding section below. Alternatively, the workaround with box filled with dummy dipoles is described in

Yurkin M.A. and Huntemann M. Rigorous and fast discrete dipole approximation for particles near a plane interface, J. Phys. Chem. C 119, 29088–29094 (2015).

Mueller matrix integrated over the azimuthal angle

Yurkin M.A. Symmetry relations for the Mueller scattering matrix integrated over the azimuthal angle, J. Quant. Spectrosc. Radiat. Transfer 131, 82–87 (2013).

Decay rate (emission) enhancement

  • D’Agostino S., Della Sala F., and Andreani L.C. Dipole decay rates engineering via silver nanocones, Plasmonics 8, 1079–1086 (2013).
  • Moskalensky A.E. and Yurkin M.A. Energy budget and optical theorem for scattering of source-induced fields, Phys. Rev. A 99, 053824 (2019).

EELS and cathodoluminescence

Kichigin A.A. and Yurkin M.A. Simulating electron energy-loss spectroscopy and cathodoluminescence for particles in arbitrary host medium using the discrete dipole approximation, J. Phys. Chem. C 127, 4154–4167 (2023).

Comparisons

with other DDA codes

Penttila A., Zubko E., Lumme K., Muinonen K., Yurkin M.A., Draine B.T., Rahola J., Hoekstra A.G., and Shkuratov Y. Comparison between discrete dipole implementations and exact techniques, J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).

with other light-scattering methods

  • Yurkin M.A., Hoekstra A.G., Brock R.S., and Lu J.Q. Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers, Opt. Express 15, 17902–17911 (2007).
  • Gilev K.V., Eremina E., Yurkin M.A., and Maltsev V.P. Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells, Opt. Express 18, 5681–5690 (2010).
  • Liu C., Bi L., Panetta R.L., Yang P., and Yurkin M.A. Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations, Opt. Express 20, 16763–16776 (2012).
  • Yurkin M.A. and Kahnert M. Light scattering by a cube: accuracy limits of the discrete dipole approximation and the T-matrix method, J. Quant. Spectrosc. Radiat. Transfer 123, 176–183 (2013).
  • Podowitz D.I., Liu C., Yang P., and Yurkin M.A. Comparison of the pseudo-spectral time domain method and the discrete dipole approximation for light scattering by ice spheres, J. Quant. Spectrosc. Radiat. Transfer 146, 402–409 (2014)
  • Räbinä J., Mönkölä S., Rossi T., Penttilä A., and Muinonen K. Comparison of discrete exterior calculus and discrete-dipole approximation for electromagnetic scattering, J. Quant. Spectrosc. Radiat. Transfer 146, 417–423 (2014).

Additional packages

hyperfun

Gasteiger J., Wiegner M., Groß S., Freudenthaler V., Toledano C., Tesche M., and Kandler K. Modelling lidar-relevant optical properties of complex mineral dust aerosols, Tellus B 63, 725–741 (2011).

near_field

D’Agostino S., Pompa P.P., Chiuri R., Phaneuf R.J., Britti D.G., Rinaldi R., Cingolani R., and Della Sala F. Enhanced fluorescence by metal nanospheres on metal substrates, Opt. Lett. 34, 2381–2383 (2009).

pip

Schuh R. Arbitrary particle shape modeling in DDSCAT and validation of simulation results, in Proceedings of the DDA-Workshop, ed. Wriedt T. and Hoekstra A.G., pp. 22–24 (2007).

General DDA theory

Review of the DDA theory

Yurkin M.A. and Hoekstra A.G. The discrete dipole approximation: an overview and recent developments, J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).

Underlying volume-integral equation

Yurkin M.A. and Mishchenko M.I. Volume integral equation for electromagnetic scattering: Rigorous derivation and analysis for a set of multilayered particles with piecewise-smooth boundaries in a passive host medium, Phys. Rev. A 97, 043824 (2018).

Convergence of the DDA

Yurkin M.A., Maltsev V.P., and Hoekstra A.G. Convergence of the discrete dipole approximation. I. Theoretical analysis, J. Opt. Soc. Am. A 23, 2578–2591 (2006).

Extrapolation technique

Yurkin M.A., Maltsev V.P., and Hoekstra A.G. Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy, J. Opt. Soc. Am. A 23, 2592–2601 (2006).

Symmetry tests for the DDA results

Schmidt K., Yurkin M.A., and Kahnert M. A case study on the reciprocity in light scattering computations, Opt. Express 20, 23253–23274 (2012).

Review of a point dipole

Moskalensky A.E. and Yurkin M.A. A point electric dipole: From basic optical properties to the fluctuation-dissipation theorem, Rev. Phys. 6, 100047 (2021).

Clone this wiki locally