Code for the paper 'Speeding up Reinforcement Learning-based Information Extraction Training using Asynchronous Methods' to be presented at EMNLP 2017.
You will need to install TensorFlow.
The dev dataset has been used for training the hyperparameters. The test dataset has been used for testing.
- Change to the code directory:
cd code
python vec_consolidate.py dloads/Shooter/train.extra 5 trained_model2.p consolidated/vec_train.5.p
python vec_consolidate.py dloads/Shooter/test.extra 5 trained_model2.p consolidated/vec_test.5.p
python consolidate.py dloads/Shooter/train.extra 5 trained_model2.p consolidated/train+context.5.p consolidated/vec_train.5.p
python consolidate.py dloads/Shooter/test.extra 5 trained_model2.p consolidated/test+context.5.p consolidated/vec_test.5.p
cd code
mkdir consolidated
mkdir outputs
python server_multiprocessing.py --trainEntities consolidated/train+context.5.p --testEntities consolidated/test+context.5.p --outFile outputs/run.out --modelFile trained_model2.p --entity 4 --aggregate always --shooterLenientEval True --delayedReward False --contextType 2
cd code/a3c
mkdir saved_network
python a3c.py
@inproceedings{sharma2017speeding,
title={Speeding up Reinforcement Learning-based Information Extraction Training using Asynchronous Methods},
author={Sharma, Aditya and Parekh, Zarana and Talukdar, Partha},
booktitle={Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing},
pages={2648--2653},
year={2017}
}