-
Notifications
You must be signed in to change notification settings - Fork 31
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #49 from Jamal-dev/main
Updated, and added an example for Neo-Hooke Umat for Abaqus
- Loading branch information
Showing
3 changed files
with
130 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
include 'ttb/ttb_library.f' | ||
|
||
SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, | ||
1 RPL,DDSDDT,DRPLDE,DRPLDT, | ||
2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, | ||
3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, | ||
4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,KINC) | ||
|
||
! ABAQUS UMAT: Easy-to-extend Nearly-Incompressible Neo-Hookean | ||
! Material Formulation | ||
! Example for usage of Tensor Toolbox | ||
! capability: 3D analysis | ||
! Formulation: Total Lagrange with push forward for Abaqus | ||
! Reference: Holzapfel, G. (2001). NONLINEAR SOLID MECHANICS. | ||
! A Continuum Approach for Engineering. | ||
! | ||
! Jamal Bhatti, 2023-09-23, Leibniz University Hannover | ||
|
||
use Tensor | ||
|
||
! `implicit none` is not supported if 'ABA_PARAM.INC' is included. | ||
! declare all double-variables which start with `i,j,k,l,m,n` | ||
! - otherwise they will be integers | ||
|
||
! implicit none | ||
INCLUDE 'ABA_PARAM.INC' | ||
|
||
CHARACTER*80 CMNAME | ||
DIMENSION STRESS(NTENS),STATEV(NSTATV), | ||
1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), | ||
2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), | ||
3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3), | ||
4 JSTEP(4) | ||
|
||
PARAMETER(ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0, FOUR=4.D0) | ||
|
||
type(Tensor2) :: F1 | ||
type(Tensor4) :: P4 | ||
real(kind=8) :: J,kappa,C10,D1,dUdI1bar,dUdI2bar,dUdJ,ddUdJdJ | ||
real(kind=8) :: ddUdI1bardI1bar,ddUdI2bardI2bar,ddUdI1bardI2bar | ||
real(kind=8) :: p,ptilde,gama1bar,gama2bar,I1bar | ||
real(kind=8) :: delta1bar,delta2bar,delta3bar,delta4bar | ||
|
||
! also possible as types Tensor2s and Tensor4s | ||
type(Tensor2) :: C1,invC1,S1,Eye,Cbar,Sbar,Siso | ||
type(Tensor4) :: C4,C4bar,P4tilde,C4iso,C4vol | ||
|
||
! material parameters | ||
C10 = PROPS(2) | ||
D1 = PROPS(1) | ||
kappa = TWO/D1 | ||
|
||
Eye = identity2(Eye) | ||
F1 = dfgrd1(1:3,1:3) | ||
J = det(F1) | ||
|
||
! right cauchy-green deformation tensor and it's inverse | ||
C1 = transpose(F1) * F1 | ||
invC1 = inv(C1) | ||
dUdJ = kappa * (J - 1) | ||
ddUdJdJ = kappa | ||
dUdI1bar = C10 | ||
dUdI2bar = ZERO | ||
! double derivatives | ||
ddUdI1bardI1bar = ZERO | ||
ddUdI1bardI2bar = ZERO | ||
ddUdI2bardI2bar = ZERO | ||
Cbar = J**(-2./3.) * C1 | ||
I1bar = tr(Cbar) | ||
gama1bar = TWO * (dUdI1bar + I1bar * dUdI2bar) | ||
gama2bar = -TWO * dUdI2bar | ||
Sbar = gama1bar * Eye + gama2bar * Cbar | ||
p = dUdJ | ||
ptilde = p + J * ddUdJdJ | ||
P4 = identity4(Eye) - 1./3. * (invC1.dya.C1) | ||
Siso = J**(-2./3.) * (P4**Sbar) | ||
! push forward of pk2 stress to cauchy stress | ||
S1 = piola(F1, J * p * invC1 + Siso) / J | ||
! coefficients for the elasticity tensor | ||
delta1bar = FOUR * (ddUdI1bardI1bar + | ||
* TWO * I1bar * ddUdI1bardI2bar + dUdI2bar + | ||
* I1bar**2 * ddUdI2bardI2bar) | ||
delta2bar = -FOUR * (ddUdI1bardI2bar + I1bar * ddUdI2bardI2bar) | ||
delta3bar = FOUR * ddUdI2bardI2bar | ||
delta4bar = -FOUR * dUdI2bar | ||
C4bar = J**(-4./3.) * (delta1bar * (Eye.dya.Eye) | ||
* + delta2bar * ((Eye.dya.Cbar) + (Cbar.dya.Eye)) | ||
* + delta3bar * (Cbar.dya.Cbar) | ||
* + delta4bar * identity4(Eye)) | ||
P4tilde = identity4(invC1) - 1./3. * (invC1.dya.invC1) | ||
C4iso = P4**C4bar**transpose(P4) | ||
* + 2./3. * tr(Sbar*Cbar) * P4tilde | ||
* - 2./3. * ((invC1.dya.Siso) + (Siso.dya.invC1)) | ||
C4vol = (J * ptilde) * ((invC1.dya.invC1)) - (2. * J * p) | ||
* * (identity4(invC1)) | ||
! push forward to jaumann tangent of cauchy stress for abaqus | ||
C4 = piola(F1, C4iso + C4vol) / J + (S1.cdya.Eye) + (Eye.cdya.S1) | ||
! output as array | ||
STRESS(1:ntens) = asabqarray(voigt(S1),ntens) | ||
DDSDDE(1:ntens,1:ntens) = asabqarray(voigt(C4),ntens,ntens) | ||
return | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters