-
Notifications
You must be signed in to change notification settings - Fork 68
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #248 from TOTBWF/spans-bicategory
Show that Monads in Span(Setoid) are categories
- Loading branch information
Showing
4 changed files
with
315 additions
and
0 deletions.
There are no files selected for viewing
133 changes: 133 additions & 0 deletions
133
src/Categories/Bicategory/Construction/Spans/Properties.agda
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
{-# OPTIONS --without-K --safe #-} | ||
|
||
module Categories.Bicategory.Construction.Spans.Properties where | ||
|
||
open import Level | ||
|
||
open import Data.Product using (_,_; _×_) | ||
open import Relation.Binary.Bundles using (Setoid) | ||
import Relation.Binary.Reasoning.Setoid as SR | ||
open import Function.Equality as SΠ renaming (id to ⟶-id) | ||
|
||
open import Categories.Category | ||
open import Categories.Category.Helper | ||
open import Categories.Category.Instance.Setoids | ||
open import Categories.Category.Instance.Properties.Setoids.Limits.Canonical | ||
|
||
open import Categories.Diagram.Pullback | ||
|
||
open import Categories.Bicategory | ||
open import Categories.Bicategory.Monad | ||
|
||
import Categories.Category.Diagram.Span as Span | ||
import Categories.Bicategory.Construction.Spans as Spans | ||
|
||
-------------------------------------------------------------------------------- | ||
-- Monads in the Bicategory of Spans are Categories | ||
|
||
module _ {o ℓ : Level} (T : Monad (Spans.Spans (pullback o ℓ))) where | ||
|
||
private | ||
module T = Monad T | ||
|
||
open Span (Setoids (o ⊔ ℓ) ℓ) | ||
open Spans (pullback o ℓ) | ||
open Span⇒ | ||
open Bicategory Spans | ||
|
||
open Setoid renaming (_≈_ to [_][_≈_]) | ||
|
||
|
||
-- We can view the roof of the span as a hom set! However, we need to partition | ||
-- this big set up into small chunks with known domains/codomains. | ||
record Hom (X Y : Carrier T.C) : Set (o ⊔ ℓ) where | ||
field | ||
hom : Carrier (Span.M T.T) | ||
dom-eq : [ T.C ][ Span.dom T.T ⟨$⟩ hom ≈ X ] | ||
cod-eq : [ T.C ][ Span.cod T.T ⟨$⟩ hom ≈ Y ] | ||
|
||
open Hom | ||
|
||
private | ||
ObjSetoid : Setoid (o ⊔ ℓ) ℓ | ||
ObjSetoid = T.C | ||
|
||
HomSetoid : Setoid (o ⊔ ℓ) ℓ | ||
HomSetoid = Span.M T.T | ||
|
||
module ObjSetoid = Setoid ObjSetoid | ||
module HomSetoid = Setoid HomSetoid | ||
|
||
id⇒ : (X : Carrier T.C) → Hom X X | ||
id⇒ X = record | ||
{ hom = arr T.η ⟨$⟩ X | ||
; dom-eq = commute-dom T.η (refl T.C) | ||
; cod-eq = commute-cod T.η (refl T.C) | ||
} | ||
|
||
_×ₚ_ : ∀ {A B C} → (f : Hom B C) → (g : Hom A B) → FiberProduct (Span.cod T.T) (Span.dom T.T) | ||
_×ₚ_ {B = B} f g = record | ||
{ elem₁ = hom g | ||
; elem₂ = hom f | ||
; commute = begin | ||
Span.cod T.T ⟨$⟩ hom g ≈⟨ cod-eq g ⟩ | ||
B ≈⟨ ObjSetoid.sym (dom-eq f) ⟩ | ||
Span.dom T.T ⟨$⟩ hom f ∎ | ||
} | ||
where | ||
open SR ObjSetoid | ||
|
||
_∘⇒_ : ∀ {A B C} (f : Hom B C) → (g : Hom A B) → Hom A C | ||
_∘⇒_ {A = A} {C = C} f g = record | ||
{ hom = arr T.μ ⟨$⟩ (f ×ₚ g) | ||
; dom-eq = begin | ||
Span.dom T.T ⟨$⟩ (arr T.μ ⟨$⟩ (f ×ₚ g)) ≈⟨ (commute-dom T.μ {f ×ₚ g} {f ×ₚ g} (HomSetoid.refl , HomSetoid.refl)) ⟩ | ||
Span.dom T.T ⟨$⟩ hom g ≈⟨ dom-eq g ⟩ | ||
A ∎ | ||
; cod-eq = begin | ||
Span.cod T.T ⟨$⟩ (arr T.μ ⟨$⟩ (f ×ₚ g)) ≈⟨ commute-cod T.μ {f ×ₚ g} {f ×ₚ g} (HomSetoid.refl , HomSetoid.refl) ⟩ | ||
Span.cod T.T ⟨$⟩ hom f ≈⟨ cod-eq f ⟩ | ||
C ∎ | ||
} | ||
where | ||
open SR ObjSetoid | ||
|
||
SpanMonad⇒Category : Category (o ⊔ ℓ) (o ⊔ ℓ) ℓ | ||
SpanMonad⇒Category = categoryHelper record | ||
{ Obj = Setoid.Carrier T.C | ||
; _⇒_ = Hom | ||
; _≈_ = λ f g → [ HomSetoid ][ hom f ≈ hom g ] | ||
; id = λ {X} → id⇒ X | ||
; _∘_ = _∘⇒_ | ||
; assoc = λ {A} {B} {C} {D} {f} {g} {h} → | ||
let f×ₚ⟨g×ₚh⟩ = record | ||
{ elem₁ = record | ||
{ elem₁ = hom f | ||
; elem₂ = hom g | ||
; commute = FiberProduct.commute (g ×ₚ f) | ||
} | ||
; elem₂ = hom h | ||
; commute = FiberProduct.commute (h ×ₚ g) | ||
} | ||
in begin | ||
arr T.μ ⟨$⟩ ((h ∘⇒ g) ×ₚ f) ≈⟨ cong (arr T.μ) (HomSetoid.refl , cong (arr T.μ) (HomSetoid.refl , HomSetoid.refl)) ⟩ | ||
arr T.μ ⟨$⟩ _ ≈⟨ T.sym-assoc {f×ₚ⟨g×ₚh⟩} {f×ₚ⟨g×ₚh⟩} ((HomSetoid.refl , HomSetoid.refl) , HomSetoid.refl) ⟩ | ||
arr T.μ ⟨$⟩ _ ≈⟨ (cong (arr T.μ) (cong (arr T.μ) (HomSetoid.refl , HomSetoid.refl) , HomSetoid.refl)) ⟩ | ||
arr T.μ ⟨$⟩ (h ×ₚ (g ∘⇒ f)) ∎ | ||
; identityˡ = λ {A} {B} {f} → begin | ||
arr T.μ ⟨$⟩ (id⇒ B ×ₚ f) ≈⟨ cong (arr T.μ) (HomSetoid.refl , cong (arr T.η) (ObjSetoid.sym (cod-eq f))) ⟩ | ||
arr T.μ ⟨$⟩ _ ≈⟨ T.identityʳ HomSetoid.refl ⟩ | ||
hom f ∎ | ||
; identityʳ = λ {A} {B} {f} → begin | ||
arr T.μ ⟨$⟩ (f ×ₚ id⇒ A) ≈⟨ cong (arr T.μ) (cong (arr T.η) (ObjSetoid.sym (dom-eq f)) , HomSetoid.refl) ⟩ | ||
arr T.μ ⟨$⟩ _ ≈⟨ T.identityˡ HomSetoid.refl ⟩ | ||
hom f ∎ | ||
; equiv = record | ||
{ refl = HomSetoid.refl | ||
; sym = HomSetoid.sym | ||
; trans = HomSetoid.trans | ||
} | ||
; ∘-resp-≈ = λ f≈h g≈i → cong (arr T.μ) (g≈i , f≈h) | ||
} | ||
where | ||
open SR HomSetoid |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
{-# OPTIONS --without-K --safe #-} | ||
|
||
-- A Monad in a Bicategory. | ||
-- For the more elementary version of Monads, see 'Categories.Monad'. | ||
module Categories.Bicategory.Monad where | ||
|
||
open import Level | ||
open import Data.Product using (_,_) | ||
|
||
open import Categories.Bicategory | ||
import Categories.Bicategory.Extras as Bicat | ||
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) | ||
|
||
|
||
record Monad {o ℓ e t} (𝒞 : Bicategory o ℓ e t) : Set (o ⊔ ℓ ⊔ e ⊔ t) where | ||
open Bicat 𝒞 | ||
|
||
field | ||
C : Obj | ||
T : C ⇒₁ C | ||
η : id₁ ⇒₂ T | ||
μ : (T ⊚₀ T) ⇒₂ T | ||
|
||
assoc : μ ∘ᵥ (T ▷ μ) ∘ᵥ associator.from ≈ (μ ∘ᵥ (μ ◁ T)) | ||
sym-assoc : μ ∘ᵥ (μ ◁ T) ∘ᵥ associator.to ≈ (μ ∘ᵥ (T ▷ μ)) | ||
identityˡ : μ ∘ᵥ (T ▷ η) ∘ᵥ unitorʳ.to ≈ id₂ | ||
identityʳ : μ ∘ᵥ (η ◁ T) ∘ᵥ unitorˡ.to ≈ id₂ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
{-# OPTIONS --without-K --safe #-} | ||
module Categories.Bicategory.Monad.Properties where | ||
|
||
open import Categories.Category | ||
open import Categories.Bicategory.Instance.Cats | ||
open import Categories.NaturalTransformation using (NaturalTransformation) | ||
open import Categories.Functor using (Functor) | ||
|
||
import Categories.Bicategory.Monad as BicatMonad | ||
import Categories.Monad as ElemMonad | ||
|
||
import Categories.Morphism.Reasoning as MR | ||
|
||
-------------------------------------------------------------------------------- | ||
-- Bicategorical Monads in Cat are the same as the more elementary | ||
-- definition of Monads. | ||
|
||
CatMonad⇒Monad : ∀ {o ℓ e} → (T : BicatMonad.Monad (Cats o ℓ e)) → ElemMonad.Monad (BicatMonad.Monad.C T) | ||
CatMonad⇒Monad T = record | ||
{ F = T.T | ||
; η = T.η | ||
; μ = T.μ | ||
; assoc = λ {X} → begin | ||
η T.μ X ∘ F₁ T.T (η T.μ X) ≈⟨ intro-ids ⟩ | ||
(η T.μ X ∘ (F₁ T.T (η T.μ X) ∘ id) ∘ id) ≈⟨ T.assoc ⟩ | ||
(η T.μ X ∘ F₁ T.T id ∘ η T.μ (F₀ T.T X)) ≈⟨ ∘-resp-≈ʳ (∘-resp-≈ˡ (identity T.T) ○ identityˡ) ⟩ | ||
η T.μ X ∘ η T.μ (F₀ T.T X) ∎ | ||
; sym-assoc = λ {X} → begin | ||
η T.μ X ∘ η T.μ (F₀ T.T X) ≈⟨ intro-F-ids ⟩ | ||
η T.μ X ∘ (F₁ T.T id ∘ η T.μ (F₀ T.T X)) ∘ id ≈⟨ T.sym-assoc ⟩ | ||
η T.μ X ∘ F₁ T.T (η T.μ X) ∘ id ≈⟨ ∘-resp-≈ʳ identityʳ ⟩ | ||
η T.μ X ∘ F₁ T.T (η T.μ X) ∎ | ||
; identityˡ = λ {X} → begin | ||
η T.μ X ∘ F₁ T.T (η T.η X) ≈⟨ intro-ids ⟩ | ||
η T.μ X ∘ (F₁ T.T (η T.η X) ∘ id) ∘ id ≈⟨ T.identityˡ ⟩ | ||
id ∎ | ||
; identityʳ = λ {X} → begin | ||
η T.μ X ∘ η T.η (F₀ T.T X) ≈⟨ intro-F-ids ⟩ | ||
η T.μ X ∘ (F₁ T.T id ∘ η T.η (F₀ T.T X)) ∘ id ≈⟨ T.identityʳ ⟩ | ||
id ∎ | ||
} | ||
where | ||
module T = BicatMonad.Monad T | ||
open Category (BicatMonad.Monad.C T) | ||
open HomReasoning | ||
open Equiv | ||
open MR (BicatMonad.Monad.C T) | ||
|
||
open NaturalTransformation | ||
open Functor | ||
|
||
intro-ids : ∀ {X Y Z} {f : Y ⇒ Z} {g : X ⇒ Y} → f ∘ g ≈ f ∘ (g ∘ id) ∘ id | ||
intro-ids = ⟺ (∘-resp-≈ʳ identityʳ) ○ ⟺ (∘-resp-≈ʳ identityʳ) | ||
|
||
intro-F-ids : ∀ {X Y Z} {f : F₀ T.T Y ⇒ Z} {g : X ⇒ F₀ T.T Y} → f ∘ g ≈ f ∘ (F₁ T.T id ∘ g) ∘ id | ||
intro-F-ids = ∘-resp-≈ʳ (⟺ identityˡ ○ ⟺ (∘-resp-≈ˡ (identity T.T))) ○ ⟺ (∘-resp-≈ʳ identityʳ) | ||
|
||
Monad⇒CatMonad : ∀ {o ℓ e} {𝒞 : Category o ℓ e} → (T : ElemMonad.Monad 𝒞) → BicatMonad.Monad (Cats o ℓ e) | ||
Monad⇒CatMonad {𝒞 = 𝒞} T = record | ||
{ C = 𝒞 | ||
; T = T.F | ||
; η = T.η | ||
; μ = T.μ | ||
; assoc = λ {X} → begin | ||
T.μ.η X ∘ (T.F.F₁ (T.μ.η X) ∘ id) ∘ id ≈⟨ eliminate-ids ⟩ | ||
T.μ.η X ∘ T.F.F₁ (T.μ.η X) ≈⟨ T.assoc ⟩ | ||
T.μ.η X ∘ T.μ.η (T.F.F₀ X) ≈⟨ ∘-resp-≈ʳ (⟺ identityˡ ○ ∘-resp-≈ˡ (⟺ T.F.identity)) ⟩ | ||
T.μ.η X ∘ T.F.F₁ id ∘ T.μ.η (T.F.F₀ X) ∎ | ||
; sym-assoc = λ {X} → begin | ||
T.μ.η X ∘ (T.F.F₁ id ∘ T.μ.η (T.F.F₀ X)) ∘ id ≈⟨ eliminate-F-ids ⟩ | ||
T.μ.η X ∘ T.μ.η (T.F.F₀ X) ≈⟨ T.sym-assoc ⟩ | ||
T.μ.η X ∘ T.F.F₁ (T.μ.η X) ≈⟨ ∘-resp-≈ʳ (⟺ identityʳ) ⟩ | ||
T.μ.η X ∘ T.F.F₁ (T.μ.η X) ∘ id ∎ | ||
; identityˡ = λ {X} → begin | ||
T.μ.η X ∘ (T.F.F₁ (T.η.η X) ∘ id) ∘ id ≈⟨ eliminate-ids ⟩ | ||
T.μ.η X ∘ T.F.F₁ (T.η.η X) ≈⟨ T.identityˡ ⟩ | ||
id ∎ | ||
; identityʳ = λ {X} → begin | ||
(T.μ.η X ∘ (T.F.F₁ id ∘ T.η.η (T.F.F₀ X)) ∘ id) ≈⟨ eliminate-F-ids ⟩ | ||
T.μ.η X ∘ T.η.η (T.F.F₀ X) ≈⟨ T.identityʳ ⟩ | ||
id ∎ | ||
} | ||
where | ||
module T = ElemMonad.Monad T | ||
open Category 𝒞 | ||
open HomReasoning | ||
open MR 𝒞 | ||
|
||
eliminate-ids : ∀ {X Y Z} {f : Y ⇒ Z} {g : X ⇒ Y} → f ∘ (g ∘ id) ∘ id ≈ f ∘ g | ||
eliminate-ids = ∘-resp-≈ʳ identityʳ ○ ∘-resp-≈ʳ identityʳ | ||
|
||
eliminate-F-ids : ∀ {X Y Z} {f : T.F.F₀ Y ⇒ Z} {g : X ⇒ T.F.F₀ Y} → f ∘ (T.F.F₁ id ∘ g) ∘ id ≈ f ∘ g | ||
eliminate-F-ids = ∘-resp-≈ʳ identityʳ ○ ∘-resp-≈ʳ (∘-resp-≈ˡ T.F.identity ○ identityˡ) |
62 changes: 62 additions & 0 deletions
62
src/Categories/Category/Instance/Properties/Setoids/Limits/Canonical.agda
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
{-# OPTIONS --without-K --safe #-} | ||
|
||
-- A "canonical" presentation of limits in Setoid. | ||
-- | ||
-- These limits are obviously isomorphic to those created by | ||
-- the Completeness proof, but are far less unweildy to work with. | ||
-- This isomorphism is witnessed by Categories.Diagram.Pullback.up-to-iso | ||
|
||
module Categories.Category.Instance.Properties.Setoids.Limits.Canonical where | ||
|
||
open import Level | ||
|
||
open import Data.Product using (_,_; _×_) | ||
|
||
open import Relation.Binary.Bundles using (Setoid) | ||
open import Function.Equality as SΠ renaming (id to ⟶-id) | ||
import Relation.Binary.Reasoning.Setoid as SR | ||
|
||
open import Categories.Diagram.Pullback | ||
|
||
open import Categories.Category.Instance.Setoids | ||
|
||
open Setoid renaming (_≈_ to [_][_≈_]) | ||
|
||
-------------------------------------------------------------------------------- | ||
-- Pullbacks | ||
|
||
record FiberProduct {o ℓ} {X Y Z : Setoid o ℓ} (f : X ⟶ Z) (g : Y ⟶ Z) : Set (o ⊔ ℓ) where | ||
field | ||
elem₁ : Carrier X | ||
elem₂ : Carrier Y | ||
commute : [ Z ][ f ⟨$⟩ elem₁ ≈ g ⟨$⟩ elem₂ ] | ||
|
||
open FiberProduct | ||
|
||
pullback : ∀ (o ℓ : Level) {X Y Z : Setoid (o ⊔ ℓ) ℓ} → (f : X ⟶ Z) → (g : Y ⟶ Z) → Pullback (Setoids (o ⊔ ℓ) ℓ) f g | ||
pullback _ _ {X = X} {Y = Y} {Z = Z} f g = record | ||
{ P = record | ||
{ Carrier = FiberProduct f g | ||
; _≈_ = λ p q → [ X ][ elem₁ p ≈ elem₁ q ] × [ Y ][ elem₂ p ≈ elem₂ q ] | ||
; isEquivalence = record | ||
{ refl = (refl X) , (refl Y) | ||
; sym = λ (eq₁ , eq₂) → sym X eq₁ , sym Y eq₂ | ||
; trans = λ (eq₁ , eq₂) (eq₁′ , eq₂′) → (trans X eq₁ eq₁′) , (trans Y eq₂ eq₂′) | ||
} | ||
} | ||
; p₁ = record { _⟨$⟩_ = elem₁ ; cong = λ (eq₁ , _) → eq₁ } | ||
; p₂ = record { _⟨$⟩_ = elem₂ ; cong = λ (_ , eq₂) → eq₂ } | ||
; isPullback = record | ||
{ commute = λ {p} {q} (eq₁ , eq₂) → trans Z (cong f eq₁) (commute q) | ||
; universal = λ {A} {h₁} {h₂} eq → record | ||
{ _⟨$⟩_ = λ a → record | ||
{ elem₁ = h₁ ⟨$⟩ a | ||
; elem₂ = h₂ ⟨$⟩ a | ||
; commute = eq (refl A) | ||
} | ||
; cong = λ eq → cong h₁ eq , cong h₂ eq } | ||
; unique = λ eq₁ eq₂ x≈y → eq₁ x≈y , eq₂ x≈y | ||
; p₁∘universal≈h₁ = λ {_} {h₁} {_} eq → cong h₁ eq | ||
; p₂∘universal≈h₂ = λ {_} {_} {h₂} eq → cong h₂ eq | ||
} | ||
} |