Skip to content

Commit

Permalink
Whitehead's Lemma (#1067)
Browse files Browse the repository at this point in the history
* Whiteheads Lemma

* comments in Whiteheads lemma file

* delete-trailing-whitespace

* moved lemmas, removed duplicates
  • Loading branch information
owen-milner authored Oct 27, 2023
1 parent 1196aad commit abdb1f9
Show file tree
Hide file tree
Showing 4 changed files with 393 additions and 0 deletions.
5 changes: 5 additions & 0 deletions Cubical/Foundations/Equiv/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -253,3 +253,8 @@ isEquiv[equivFunA≃B∘f]→isEquiv[f] f (g , gIsEquiv) g∘fIsEquiv =

w' : isEquiv (equivFun (invEquiv (_ , g∘fIsEquiv)) ∘ g)
w' = snd (compEquiv (_ , gIsEquiv) (invEquiv (_ , g∘fIsEquiv)))

isPointedTarget→isEquiv→isEquiv : {A B : Type ℓ} (f : A B)
(B isEquiv f) isEquiv f
equiv-proof (isPointedTarget→isEquiv→isEquiv f hf) =
λ y equiv-proof (hf y) y
10 changes: 10 additions & 0 deletions Cubical/Foundations/Pointed/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -234,3 +234,13 @@ Iso.fun (pointedSecIso Q) F = (λ x → F (fst x) .fst (snd x)) , (λ x → F x
Iso.inv (pointedSecIso Q) F a = (fst F ∘ (a ,_)) , snd F a
Iso.rightInv (pointedSecIso Q) F = refl
Iso.leftInv (pointedSecIso Q) F = refl

compPathrEquiv∙ : {A : Type ℓ} {a b c : A} {q : a ≡ b} (p : b ≡ c)
((a ≡ b) , q) ≃∙ ((a ≡ c) , q ∙ p)
fst (compPathrEquiv∙ p) = compPathrEquiv p
snd (compPathrEquiv∙ p) = refl

compPathlEquiv∙ : {A : Type ℓ} {a b c : A} {q : b ≡ c} (p : a ≡ b)
((b ≡ c) , q) ≃∙ ((a ≡ c) , p ∙ q)
fst (compPathlEquiv∙ p) = compPathlEquiv p
snd (compPathlEquiv∙ p) = refl
5 changes: 5 additions & 0 deletions Cubical/HITs/SetTruncation/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -333,3 +333,8 @@ Iso.fun (PathIdTrunc₀Iso {b = b}) p =
Iso.inv PathIdTrunc₀Iso = pRec (squash₂ _ _) (cong ∣_∣₂)
Iso.rightInv PathIdTrunc₀Iso _ = squash₁ _ _
Iso.leftInv PathIdTrunc₀Iso _ = squash₂ _ _ _ _

mapFunctorial : {A B C : Type ℓ} (f : A B) (g : B C)
map g ∘ map f ≡ map (g ∘ f)
mapFunctorial f g =
funExt (elim (λ x isSetPathImplicit) λ a refl)
Loading

0 comments on commit abdb1f9

Please sign in to comment.