Skip to content

Commit

Permalink
Category of groups, uniqness of adjunctions (#1065)
Browse files Browse the repository at this point in the history
* - Introduced a new module `LeftAdjointUniqeUpToNatIso` for proving the uniqueness of left adjoints up to natural isomorphisms.
- Defined `AssocCong₂⋆L` and `AssocCong₂⋆R` helpers
- Defined `GroupCategory` as a category of groups, `Forget` functor , equivalence `GroupsCatIso≃GroupEquiv`, and univalence of Grp.

* uniqness of right adj

* minor cleanup

* more explicit definition to typecheck with agda 2.6.3

* Revert "minor cleanup"

This reverts commit 02bd5e2.

* Revert "more explicit definition to typecheck with agda 2.6.3"

This reverts commit 2e626b6.
  • Loading branch information
marcinjangrzybowski authored Nov 17, 2023
1 parent 3b2a50a commit e9b8b40
Show file tree
Hide file tree
Showing 8 changed files with 301 additions and 5 deletions.
124 changes: 123 additions & 1 deletion Cubical/Categories/Adjoint.agda
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,12 @@
module Cubical.Categories.Adjoint where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv

open import Cubical.Data.Sigma
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
open import Cubical.Categories.Instances.Functors
open import Cubical.Categories.NaturalTransformation
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
Expand Down Expand Up @@ -61,6 +64,125 @@ module UnitCounit {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} (F : Funct
triangleIdentities : TriangleIdentities η ε
open TriangleIdentities triangleIdentities public


private
variable
C : Category ℓC ℓC'
D : Category ℓC ℓC'


module _ {F : Functor C D} {G : Functor D C} where
open UnitCounit
open _⊣_
open NatTrans
open TriangleIdentities
opositeAdjunction : (F ⊣ G) ((G ^opF) ⊣ (F ^opF))
N-ob (η (opositeAdjunction x)) = N-ob (ε x)
N-hom (η (opositeAdjunction x)) f = sym (N-hom (ε x) f)
N-ob (ε (opositeAdjunction x)) = N-ob (η x)
N-hom (ε (opositeAdjunction x)) f = sym (N-hom (η x) f)
Δ₁ (triangleIdentities (opositeAdjunction x)) =
Δ₂ (triangleIdentities x)
Δ₂ (triangleIdentities (opositeAdjunction x)) =
Δ₁ (triangleIdentities x)

Iso⊣^opF : Iso (F ⊣ G) ((G ^opF) ⊣ (F ^opF))
fun Iso⊣^opF = opositeAdjunction
inv Iso⊣^opF = _
rightInv Iso⊣^opF _ = refl
leftInv Iso⊣^opF _ = refl

private
variable
F F' : Functor C D
G G' : Functor D C


module AdjointUniqeUpToNatIso where
open UnitCounit
module Left
(F⊣G : _⊣_ {D = D} F G)
(F'⊣G : F' ⊣ G) where
open NatTrans

private
variable
H H' : Functor C D

_D⋆_ = seq' D

m : (H⊣G : H ⊣ G) (H'⊣G : H' ⊣ G)
{x} D [ H ⟅ x ⟆ , H' ⟅ x ⟆ ]
m {H = H} H⊣G H'⊣G =
H ⟪ (H'⊣G .η) ⟦ _ ⟧ ⟫ ⋆⟨ D ⟩ (H⊣G .ε) ⟦ _ ⟧ where open _⊣_

private
s : (H⊣G : H ⊣ G) (H'⊣G : H' ⊣ G) {x}
seq' D (m H'⊣G H⊣G {x}) (m H⊣G H'⊣G {x})
≡ D .id
s {H = H} {H' = H'} H⊣G H'⊣G = by-N-homs ∙ by-Δs
where
open _⊣_ H⊣G using (η ; Δ₂)
open _⊣_ H'⊣G using (ε ; Δ₁)
by-N-homs =
AssocCong₂⋆R {C = D} _
(AssocCong₂⋆L {C = D} (sym (N-hom ε _)) _)
∙ cong₂ _D⋆_
(sym (F-seq H' _ _)
∙∙ cong (H' ⟪_⟫) ((sym (N-hom η _)))
∙∙ F-seq H' _ _)
(sym (N-hom ε _))

by-Δs =
⋆Assoc D _ _ _
∙∙ cong (H' ⟪ _ ⟫ D⋆_)
(sym (⋆Assoc D _ _ _)
∙ cong (_D⋆ ε ⟦ _ ⟧)
( sym (F-seq H' _ _)
∙∙ cong (H' ⟪_⟫) (Δ₂ (H' ⟅ _ ⟆))
∙∙ F-id H')
∙ ⋆IdL D _)
∙∙ Δ₁ _

open NatIso
open isIso

F≅ᶜF' : F ≅ᶜ F'
N-ob (trans F≅ᶜF') _ = _
N-hom (trans F≅ᶜF') _ =
sym (⋆Assoc D _ _ _)
∙∙ cong (_D⋆ (F⊣G .ε) ⟦ _ ⟧)
(sym (F-seq F _ _)
∙∙ cong (F ⟪_⟫) (N-hom (F'⊣G .η) _)
∙∙ (F-seq F _ _))
∙∙ AssocCong₂⋆R {C = D} _ (N-hom (F⊣G .ε) _)
where open _⊣_
inv (nIso F≅ᶜF' _) = _
sec (nIso F≅ᶜF' _) = s F⊣G F'⊣G
ret (nIso F≅ᶜF' _) = s F'⊣G F⊣G

F≡F' : isUnivalent D F ≡ F'
F≡F' univD =
isUnivalent.CatIsoToPath
(isUnivalentFUNCTOR _ _ univD)
(NatIso→FUNCTORIso _ _ F≅ᶜF')

module Right (F⊣G : F UnitCounit.⊣ G)
(F⊣G' : F UnitCounit.⊣ G') where

G≅ᶜG' : G ≅ᶜ G'
G≅ᶜG' = Iso.inv congNatIso^opFiso
(Left.F≅ᶜF' (opositeAdjunction F⊣G')
(opositeAdjunction F⊣G))

open NatIso

G≡G' : isUnivalent _ G ≡ G'
G≡G' univC =
isUnivalent.CatIsoToPath
(isUnivalentFUNCTOR _ _ univC)
(NatIso→FUNCTORIso _ _ G≅ᶜG')

module NaturalBijection where
-- Adjoint def 2: natural bijection
record _⊣_ {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} (F : Functor C D) (G : Functor D C) : Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) where
Expand Down Expand Up @@ -122,7 +244,7 @@ definition to the first.
The second unnamed module does the reverse.
-}

module _ {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} (F : Functor C D) (G : Functor D C) where
module _ (F : Functor C D) (G : Functor D C) where
open UnitCounit
open NaturalBijection renaming (_⊣_ to _⊣²_)
module _ (adj : F ⊣² G) where
Expand Down
1 change: 0 additions & 1 deletion Cubical/Categories/Category/Base.agda
Original file line number Diff line number Diff line change
Expand Up @@ -136,7 +136,6 @@ _⋆_ (C ^op) f g = g ⋆⟨ C ⟩ f
⋆Assoc (C ^op) f g h = sym (C .⋆Assoc _ _ _)
isSetHom (C ^op) = C .isSetHom


ΣPropCat : (C : Category ℓ ℓ') (P : ℙ (ob C)) Category ℓ ℓ'
ob (ΣPropCat C P) = Σ[ x ∈ ob C ] x ∈ P
Hom[_,_] (ΣPropCat C P) x y = C [ fst x , fst y ]
Expand Down
24 changes: 24 additions & 0 deletions Cubical/Categories/Category/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -91,3 +91,27 @@ module _ {C : Category ℓ ℓ'} where
(r : PathP (λ i C [ x , p i ]) f' f)
f ⋆⟨ C ⟩ g ≡ seqP' {p = p} f' g
rCatWhiskerP f' f g r = cong (λ v v ⋆⟨ C ⟩ g) (sym (fromPathP r))


AssocCong₂⋆L : {x y' y z w : C .ob}
{f' : C [ x , y' ]} {f : C [ x , y ]}
{g' : C [ y' , z ]} {g : C [ y , z ]}
f ⋆⟨ C ⟩ g ≡ f' ⋆⟨ C ⟩ g' (h : C [ z , w ])
f ⋆⟨ C ⟩ (g ⋆⟨ C ⟩ h) ≡
f' ⋆⟨ C ⟩ (g' ⋆⟨ C ⟩ h)
AssocCong₂⋆L p h =
sym (⋆Assoc C _ _ h)
∙∙ (λ i p i ⋆⟨ C ⟩ h) ∙∙
⋆Assoc C _ _ h

AssocCong₂⋆R : {x y z z' w : C .ob}
(f : C [ x , y ])
{g' : C [ y , z' ]} {g : C [ y , z ]}
{h' : C [ z' , w ]} {h : C [ z , w ]}
g ⋆⟨ C ⟩ h ≡ g' ⋆⟨ C ⟩ h'
(f ⋆⟨ C ⟩ g) ⋆⟨ C ⟩ h ≡
(f ⋆⟨ C ⟩ g') ⋆⟨ C ⟩ h'
AssocCong₂⋆R f p =
⋆Assoc C f _ _
∙∙ (λ i f ⋆⟨ C ⟩ p i) ∙∙
sym (⋆Assoc C _ _ _)
19 changes: 18 additions & 1 deletion Cubical/Categories/Functor/Base.agda
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Powerset
open import Cubical.Foundations.Isomorphism

open import Cubical.Data.Sigma

Expand Down Expand Up @@ -142,12 +143,28 @@ funcCompOb≡ : ∀ (G : Functor D E) (F : Functor C D) (c : ob C)
funcComp G F .F-ob c ≡ G .F-ob (F .F-ob c)
funcCompOb≡ G F c = refl

_^opF : Functor C D Functor (C ^op) (D ^op)

_^opF : Functor C D Functor (C ^op) (D ^op)
(F ^opF) .F-ob = F .F-ob
(F ^opF) .F-hom = F .F-hom
(F ^opF) .F-id = F .F-id
(F ^opF) .F-seq f g = F .F-seq g f

open Iso
Iso^opF : Iso (Functor C D) (Functor (C ^op) (D ^op))
fun Iso^opF = _^opF
inv Iso^opF = _^opF
F-ob (rightInv Iso^opF b i) = F-ob b
F-hom (rightInv Iso^opF b i) = F-hom b
F-id (rightInv Iso^opF b i) = F-id b
F-seq (rightInv Iso^opF b i) = F-seq b
F-ob (leftInv Iso^opF a i) = F-ob a
F-hom (leftInv Iso^opF a i) = F-hom a
F-id (leftInv Iso^opF a i) = F-id a
F-seq (leftInv Iso^opF a i) = F-seq a

^opFEquiv : Functor C D ≃ Functor (C ^op) (D ^op)
^opFEquiv = isoToEquiv Iso^opF

-- Functoriality on full subcategories defined by propositions
ΣPropCatFunc : {P : ℙ (ob C)} {Q : ℙ (ob D)} (F : Functor C D)
Expand Down
75 changes: 75 additions & 0 deletions Cubical/Categories/Instances/Groups.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
-- The category Grp of groups
{-# OPTIONS --safe #-}

module Cubical.Categories.Instances.Groups where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Function

open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.GroupPath
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties

open import Cubical.Categories.Category.Base renaming (isIso to isCatIso)
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Functor.Base

open import Cubical.Data.Sigma

module _ {ℓ : Level} where
open Category hiding (_∘_)

GroupCategory : Category (ℓ-suc ℓ) ℓ
GroupCategory .ob = Group ℓ
GroupCategory .Hom[_,_] = GroupHom
GroupCategory .id = idGroupHom
GroupCategory ._⋆_ = compGroupHom
GroupCategory .⋆IdL f = GroupHom≡ refl
GroupCategory .⋆IdR f = GroupHom≡ refl
GroupCategory .⋆Assoc f g h = GroupHom≡ refl
GroupCategory .isSetHom = isSetGroupHom

Forget : Functor GroupCategory (SET ℓ)
Functor.F-ob Forget G = fst G , GroupStr.is-set (snd G)
Functor.F-hom Forget = fst
Functor.F-id Forget = refl
Functor.F-seq Forget _ _ = refl

GroupsCatIso≃GroupEquiv : G G'
CatIso GroupCategory G G' ≃
GroupEquiv G G'
GroupsCatIso≃GroupEquiv G G' =
Σ-cong-equiv-snd
(λ _ propBiimpl→Equiv
(isPropIsIso _) (isPropIsEquiv _)
(isoToIsEquiv ∘ →iso) →ciso)
∙ₑ Σ-assoc-swap-≃
where
open Iso
open isCatIso
→iso : {x} isCatIso GroupCategory x Iso _ _
fun (→iso ici) = _
inv (→iso ici) = fst (inv ici)
rightInv (→iso ici) b i = fst (sec ici i) b
leftInv (→iso ici) a i = fst (ret ici i) a

→ciso : {x} isEquiv (fst x) isCatIso GroupCategory x
fst (inv (→ciso is≃)) = _
snd (inv (→ciso {x} is≃)) =
isGroupHomInv ((_ , is≃) , (snd x))
sec (→ciso is≃) =
Σ≡Prop (λ _ isPropIsGroupHom _ _) (funExt (secEq (_ , is≃)))
ret (→ciso is≃) =
Σ≡Prop (λ _ isPropIsGroupHom _ _) (funExt (retEq (_ , is≃)))


isUnivalentGrp : isUnivalent {ℓ' = ℓ} GroupCategory
isUnivalent.univ isUnivalentGrp _ _ =
precomposesToId→Equiv _ _ (funExt
(Σ≡Prop isPropIsIso
∘ Σ≡Prop (λ _ isPropIsGroupHom _ _)
λ _ transportRefl _))
(snd (GroupsCatIso≃GroupEquiv _ _ ∙ₑ GroupPath _ _))
25 changes: 23 additions & 2 deletions Cubical/Categories/NaturalTransformation/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,9 @@ open import Cubical.Categories.NaturalTransformation.Base
private
variable
ℓB ℓB' ℓC ℓC' ℓD ℓD' ℓE ℓE' : Level
C : Category ℓC ℓC'
D : Category ℓD ℓD'
F F' : Functor C D

open isIsoC
open NatIso
Expand Down Expand Up @@ -108,8 +111,7 @@ module _ {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} where
-- Natural isomorphism is path when the target category is univalent.

module _
{C : Category ℓC ℓC'}
{D : Category ℓD ℓD'}(isUnivD : isUnivalent D)
(isUnivD : isUnivalent D)
{F G : Functor C D} where

open isUnivalent isUnivD
Expand Down Expand Up @@ -172,3 +174,22 @@ module _ {B : Category ℓB ℓB'}{C : Category ℓC ℓC'}{D : Category ℓD
CAT⋆Assoc F G H .trans .N-ob = idTrans ((H ∘F G) ∘F F) .N-ob
CAT⋆Assoc F G H .trans .N-hom = idTrans ((H ∘F G) ∘F F) .N-hom
CAT⋆Assoc F G H .nIso = idNatIso ((H ∘F G) ∘F F) .nIso



⇒^opFiso : Iso (F ⇒ F') (_^opF {C = C} {D = D} F' ⇒ F ^opF )
N-ob (fun ⇒^opFiso x) = N-ob x
N-hom (fun ⇒^opFiso x) f = sym (N-hom x f)
inv ⇒^opFiso = _
rightInv ⇒^opFiso _ = refl
leftInv ⇒^opFiso _ = refl

congNatIso^opFiso : Iso (F ≅ᶜ F') (_^opF {C = C} {D = D} F' ≅ᶜ F ^opF )
trans (fun congNatIso^opFiso x) = Iso.fun ⇒^opFiso (trans x)
inv (nIso (fun congNatIso^opFiso x) x₁) = _
sec (nIso (fun congNatIso^opFiso x) x₁) = ret (nIso x x₁)
ret (nIso (fun congNatIso^opFiso x) x₁) = sec (nIso x x₁)
inv congNatIso^opFiso = _
rightInv congNatIso^opFiso _ = refl
leftInv congNatIso^opFiso _ = refl

9 changes: 9 additions & 0 deletions Cubical/Data/Sigma/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -180,6 +180,15 @@ module _ {A : Type ℓ} {B : A → Type ℓ'} {C : ∀ a → B a → Type ℓ''}

unquoteDecl Σ-Π-≃ = declStrictIsoToEquiv Σ-Π-≃ Σ-Π-Iso

module _ {A : Type ℓ} {B : A Type ℓ'} {B' : a Type ℓ''} where
Σ-assoc-swap-Iso : Iso (Σ[ a ∈ Σ A B ] B' (fst a)) (Σ[ a ∈ Σ A B' ] B (fst a))
fun Σ-assoc-swap-Iso ((x , y) , z) = ((x , z) , y)
inv Σ-assoc-swap-Iso ((x , z) , y) = ((x , y) , z)
rightInv Σ-assoc-swap-Iso _ = refl
leftInv Σ-assoc-swap-Iso _ = refl

unquoteDecl Σ-assoc-swap-≃ = declStrictIsoToEquiv Σ-assoc-swap-≃ Σ-assoc-swap-Iso

Σ-cong-iso-fst : (isom : Iso A A') Iso (Σ A (B ∘ fun isom)) (Σ A' B)
fun (Σ-cong-iso-fst isom) x = fun isom (x .fst) , x .snd
inv (Σ-cong-iso-fst {B = B} isom) x = inv isom (x .fst) , subst B (sym (ε (x .fst))) (x .snd)
Expand Down
Loading

0 comments on commit e9b8b40

Please sign in to comment.