Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rational order #1071

Merged
merged 10 commits into from
Nov 2, 2023
2 changes: 1 addition & 1 deletion Cubical/Algebra/CommRing/Instances/Int.agda
Original file line number Diff line number Diff line change
Expand Up @@ -22,4 +22,4 @@ isCommRing (snd ℤCommRing) = isCommRingℤ
isCommRingℤ : IsCommRing 0 1 _+ℤ_ _·ℤ_ -ℤ_
isCommRingℤ = makeIsCommRing isSetℤ Int.+Assoc (λ _ → refl)
-Cancel Int.+Comm Int.·Assoc
Int.·Rid ·DistR+ Int.·Comm
Int.·IdR ·DistR+ Int.·Comm
2 changes: 1 addition & 1 deletion Cubical/Algebra/CommRing/Instances/Rationals.agda
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ module Cubical.Algebra.CommRing.Instances.Rationals where
open import Cubical.Foundations.Prelude

open import Cubical.Algebra.CommRing
open import Cubical.Data.Rationals
open import Cubical.Data.Rationals.MoreRationals.QuoQ
renaming (ℚ to ℚType ; _+_ to _+ℚ_; _·_ to _·ℚ_; -_ to -ℚ_)

open CommRingStr
Expand Down
2 changes: 1 addition & 1 deletion Cubical/Algebra/Field/Instances/Rationals.agda
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ open import Cubical.Data.Int.MoreInts.QuoInt
; ·-zeroˡ to ·ℤ-zeroˡ
; ·-identityʳ to ·ℤ-identityʳ)
open import Cubical.HITs.SetQuotients as SetQuot
open import Cubical.Data.Rationals
open import Cubical.Data.Rationals.MoreRationals.QuoQ
using (ℚ ; ℕ₊₁→ℤ ; isEquivRel∼)

open import Cubical.Algebra.Field
Expand Down
6 changes: 3 additions & 3 deletions Cubical/Algebra/Group/ZAction.agda
Original file line number Diff line number Diff line change
Expand Up @@ -12,9 +12,9 @@ open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Powerset

open import Cubical.Data.Sigma
open import Cubical.Data.Int
open import Cubical.Data.Int as ℤ
renaming
(_·_ to _*_ ; _+_ to _+ℤ_ ; _-_ to _-ℤ_ ; pos·pos to pos·) hiding (·Assoc)
(_·_ to _*_ ; _+_ to _+ℤ_ ; _-_ to _-ℤ_ ; pos·pos to pos·) hiding (·Assoc; ·IdL; ·IdR)
open import Cubical.Data.Nat renaming (_·_ to _·ℕ_ ; _+_ to _+ℕ_)
open import Cubical.Data.Nat.Mod
open import Cubical.Data.Nat.Order
Expand Down Expand Up @@ -410,7 +410,7 @@ characℤ≅ℤ e =
(λ p → inr (Σ≡Prop (λ _ → isPropIsGroupHom _ _)
(Σ≡Prop (λ _ → isPropIsEquiv _)
(funExt λ x →
cong (fst (fst e)) (sym (·Rid x))
cong (fst (fst e)) (sym (ℤ.·IdR x))
∙ GroupHomℤ→ℤPres· ((fst (fst e)) , (snd e)) x 1
∙ cong (x *_) p
∙ ·Comm x -1 ))))
Expand Down
261 changes: 217 additions & 44 deletions Cubical/Data/Int/Order.agda

Large diffs are not rendered by default.

853 changes: 851 additions & 2 deletions Cubical/Data/Int/Properties.agda

Large diffs are not rendered by default.

23 changes: 10 additions & 13 deletions Cubical/Data/Rationals/Base.agda
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,12 @@ module Cubical.Data.Rationals.Base where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function

open import Cubical.Data.Nat as ℕ using (discreteℕ)
open import Cubical.Data.NatPlusOne
open import Cubical.Data.Sigma
open import Cubical.Data.Int.MoreInts.QuoInt
open import Cubical.Data.Int

open import Cubical.HITs.SetQuotients as SetQuotient
using ([_]; eq/; discreteSetQuotients) renaming (_/_ to _//_) public
Expand All @@ -19,10 +20,6 @@ open BinaryRelation
ℕ₊₁→ℤ : ℕ₊₁ → ℤ
ℕ₊₁→ℤ n = pos (ℕ₊₁→ℕ n)

private
ℕ₊₁→ℤ-hom : ∀ m n → ℕ₊₁→ℤ (m ·₊₁ n) ≡ ℕ₊₁→ℤ m · ℕ₊₁→ℤ n
ℕ₊₁→ℤ-hom _ _ = refl


-- ℚ as a set quotient of ℤ × ℕ₊₁ (as in the HoTT book)

Expand All @@ -43,16 +40,16 @@ isSetℚ = SetQuotient.squash/
isEquivRel∼ : isEquivRel _∼_
isEquivRel.reflexive isEquivRel∼ (a , b) = refl
isEquivRel.symmetric isEquivRel∼ (a , b) (c , d) = sym
isEquivRel.transitive isEquivRel∼ (a , b) (c , d) (e , f) p q = ·-injʳ _ _ _ r
where r = (a · ℕ₊₁→ℤ f) · ℕ₊₁→ℤ d ≡[ i ]⟨ ·-comm a (ℕ₊₁→ℤ f) i · ℕ₊₁→ℤ d ⟩
(ℕ₊₁→ℤ f · a) · ℕ₊₁→ℤ d ≡⟨ sym (·-assoc (ℕ₊₁→ℤ f) a (ℕ₊₁→ℤ d)) ⟩
isEquivRel.transitive isEquivRel∼ (a , b) (c , d) (e , f) p q = ·rCancel _ _ (e · pos (ℕ.suc (ℕ₊₁.n b))) r (ℕ.snotz ∘ injPos)
where r = (a · ℕ₊₁→ℤ f) · ℕ₊₁→ℤ d ≡[ i ]⟨ ·Comm a (ℕ₊₁→ℤ f) i · ℕ₊₁→ℤ d ⟩
(ℕ₊₁→ℤ f · a) · ℕ₊₁→ℤ d ≡⟨ sym (·Assoc (ℕ₊₁→ℤ f) a (ℕ₊₁→ℤ d)) ⟩
ℕ₊₁→ℤ f · (a · ℕ₊₁→ℤ d) ≡[ i ]⟨ ℕ₊₁→ℤ f · p i ⟩
ℕ₊₁→ℤ f · (c · ℕ₊₁→ℤ b) ≡⟨ ·-assoc (ℕ₊₁→ℤ f) c (ℕ₊₁→ℤ b) ⟩
(ℕ₊₁→ℤ f · c) · ℕ₊₁→ℤ b ≡[ i ]⟨ ·-comm (ℕ₊₁→ℤ f) c i · ℕ₊₁→ℤ b ⟩
ℕ₊₁→ℤ f · (c · ℕ₊₁→ℤ b) ≡⟨ ·Assoc (ℕ₊₁→ℤ f) c (ℕ₊₁→ℤ b) ⟩
(ℕ₊₁→ℤ f · c) · ℕ₊₁→ℤ b ≡[ i ]⟨ ·Comm (ℕ₊₁→ℤ f) c i · ℕ₊₁→ℤ b ⟩
(c · ℕ₊₁→ℤ f) · ℕ₊₁→ℤ b ≡[ i ]⟨ q i · ℕ₊₁→ℤ b ⟩
(e · ℕ₊₁→ℤ d) · ℕ₊₁→ℤ b ≡⟨ sym (·-assoc e (ℕ₊₁→ℤ d) (ℕ₊₁→ℤ b)) ⟩
e · (ℕ₊₁→ℤ d · ℕ₊₁→ℤ b) ≡[ i ]⟨ e · ·-comm (ℕ₊₁→ℤ d) (ℕ₊₁→ℤ b) i ⟩
e · (ℕ₊₁→ℤ b · ℕ₊₁→ℤ d) ≡⟨ ·-assoc e (ℕ₊₁→ℤ b) (ℕ₊₁→ℤ d) ⟩
(e · ℕ₊₁→ℤ d) · ℕ₊₁→ℤ b ≡⟨ sym (·Assoc e (ℕ₊₁→ℤ d) (ℕ₊₁→ℤ b)) ⟩
e · (ℕ₊₁→ℤ d · ℕ₊₁→ℤ b) ≡[ i ]⟨ e · ·Comm (ℕ₊₁→ℤ d) (ℕ₊₁→ℤ b) i ⟩
e · (ℕ₊₁→ℤ b · ℕ₊₁→ℤ d) ≡⟨ ·Assoc e (ℕ₊₁→ℤ b) (ℕ₊₁→ℤ d) ⟩
(e · ℕ₊₁→ℤ b) · ℕ₊₁→ℤ d ∎

eq/⁻¹ : ∀ x y → Path ℚ [ x ] [ y ] → x ∼ y
Expand Down
6 changes: 6 additions & 0 deletions Cubical/Data/Rationals/MoreRationals/QuoQ.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
{-# OPTIONS --safe #-}
module Cubical.Data.Rationals.MoreRationals.QuoQ where

open import Cubical.Data.Rationals.MoreRationals.QuoQ.Base public

open import Cubical.Data.Rationals.MoreRationals.QuoQ.Properties public
75 changes: 75 additions & 0 deletions Cubical/Data/Rationals/MoreRationals/QuoQ/Base.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
{-# OPTIONS --safe #-}
module Cubical.Data.Rationals.MoreRationals.QuoQ.Base where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv

open import Cubical.Data.Nat as ℕ using (discreteℕ)
open import Cubical.Data.NatPlusOne
open import Cubical.Data.Sigma
open import Cubical.Data.Int.MoreInts.QuoInt

open import Cubical.HITs.SetQuotients as SetQuotient
using ([_]; eq/; discreteSetQuotients) renaming (_/_ to _//_) public

open import Cubical.Relation.Nullary
open import Cubical.Relation.Binary.Base
open BinaryRelation

ℕ₊₁→ℤ : ℕ₊₁ → ℤ
ℕ₊₁→ℤ n = pos (ℕ₊₁→ℕ n)

private
ℕ₊₁→ℤ-hom : ∀ m n → ℕ₊₁→ℤ (m ·₊₁ n) ≡ ℕ₊₁→ℤ m · ℕ₊₁→ℤ n
ℕ₊₁→ℤ-hom _ _ = refl


-- ℚ as a set quotient of ℤ × ℕ₊₁ (as in the HoTT book)

_∼_ : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → Type₀
(a , b) ∼ (c , d) = a · ℕ₊₁→ℤ d ≡ c · ℕ₊₁→ℤ b

ℚ : Type₀
ℚ = (ℤ × ℕ₊₁) // _∼_


isSetℚ : isSet ℚ
isSetℚ = SetQuotient.squash/

[_/_] : ℤ → ℕ₊₁ → ℚ
[ a / b ] = [ a , b ]


isEquivRel∼ : isEquivRel _∼_
isEquivRel.reflexive isEquivRel∼ (a , b) = refl
isEquivRel.symmetric isEquivRel∼ (a , b) (c , d) = sym
isEquivRel.transitive isEquivRel∼ (a , b) (c , d) (e , f) p q = ·-injʳ _ _ _ r
where r = (a · ℕ₊₁→ℤ f) · ℕ₊₁→ℤ d ≡[ i ]⟨ ·-comm a (ℕ₊₁→ℤ f) i · ℕ₊₁→ℤ d ⟩
(ℕ₊₁→ℤ f · a) · ℕ₊₁→ℤ d ≡⟨ sym (·-assoc (ℕ₊₁→ℤ f) a (ℕ₊₁→ℤ d)) ⟩
ℕ₊₁→ℤ f · (a · ℕ₊₁→ℤ d) ≡[ i ]⟨ ℕ₊₁→ℤ f · p i ⟩
ℕ₊₁→ℤ f · (c · ℕ₊₁→ℤ b) ≡⟨ ·-assoc (ℕ₊₁→ℤ f) c (ℕ₊₁→ℤ b) ⟩
(ℕ₊₁→ℤ f · c) · ℕ₊₁→ℤ b ≡[ i ]⟨ ·-comm (ℕ₊₁→ℤ f) c i · ℕ₊₁→ℤ b ⟩
(c · ℕ₊₁→ℤ f) · ℕ₊₁→ℤ b ≡[ i ]⟨ q i · ℕ₊₁→ℤ b ⟩
(e · ℕ₊₁→ℤ d) · ℕ₊₁→ℤ b ≡⟨ sym (·-assoc e (ℕ₊₁→ℤ d) (ℕ₊₁→ℤ b)) ⟩
e · (ℕ₊₁→ℤ d · ℕ₊₁→ℤ b) ≡[ i ]⟨ e · ·-comm (ℕ₊₁→ℤ d) (ℕ₊₁→ℤ b) i ⟩
e · (ℕ₊₁→ℤ b · ℕ₊₁→ℤ d) ≡⟨ ·-assoc e (ℕ₊₁→ℤ b) (ℕ₊₁→ℤ d) ⟩
(e · ℕ₊₁→ℤ b) · ℕ₊₁→ℤ d ∎

eq/⁻¹ : ∀ x y → Path ℚ [ x ] [ y ] → x ∼ y
eq/⁻¹ = SetQuotient.effective (λ _ _ → isSetℤ _ _) isEquivRel∼

discreteℚ : Discrete ℚ
discreteℚ = discreteSetQuotients isEquivRel∼ (λ _ _ → discreteℤ _ _)


-- Natural number and negative integer literals for ℚ

open import Cubical.Data.Nat.Literals public

instance
fromNatℚ : HasFromNat ℚ
fromNatℚ = record { Constraint = λ _ → Unit ; fromNat = λ n → [ pos n / 1 ] }

instance
fromNegℚ : HasFromNeg ℚ
fromNegℚ = record { Constraint = λ _ → Unit ; fromNeg = λ n → [ neg n / 1 ] }
Loading
Loading