Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Indexed W-types: hlevel without univalence. #1172

Merged
merged 1 commit into from
Nov 28, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 5 additions & 6 deletions Cubical/Data/W/Indexed.agda
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,6 @@ open import Cubical.Foundations.Function
open import Cubical.Foundations.Path
open import Cubical.Foundations.Isomorphism renaming (Iso to _≅_)
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.HLevels
open import Cubical.Functions.FunExtEquiv
open import Cubical.Data.Unit
Expand Down Expand Up @@ -55,8 +54,8 @@ module _ {X : Type ℓX} {S : X → Type ℓS} {P : ∀ x → S x → Type ℓP}
equivRepIW : (x : X) → IW S P inX x ≃ RepIW S P inX x
equivRepIW x = isoToEquiv (isoRepIW x)

pathRepIW : (x : X) → IW S P inX x ≡ RepIW S P inX x
pathRepIW x = ua (equivRepIW x)
--pathRepIW : (x : X) → IW S P inX x ≡ RepIW S P inX x
--pathRepIW x = ua (equivRepIW x)

isPropIW : (∀ x → isProp (S x)) → ∀ x → isProp (IW S P inX x)
isPropIW isPropS x (node s subtree) (node s' subtree') =
Expand Down Expand Up @@ -133,8 +132,8 @@ module IWPath {X : Type ℓX} {S : X → Type ℓS} {P : ∀ x → S x → Type
equivEncode : ∀ {x} (w w' : IW S P inX x) → (w ≡ w') ≃ Cover w w'
equivEncode w w' = isoToEquiv (isoEncode w w')

pathEncode : ∀ {x} (w w' : IW S P inX x) → (w ≡ w') ≡ Cover w w'
pathEncode w w' = ua (equivEncode w w')
--pathEncode : ∀ {x} (w w' : IW S P inX x) → (w ≡ w') ≡ Cover w w'
--pathEncode w w' = ua (equivEncode w w')

open IWPathTypes
open IWPath
Expand All @@ -143,7 +142,7 @@ isOfHLevelSuc-IW : {X : Type ℓX} {S : X → Type ℓS} {P : ∀ x → S x →
(n : HLevel) → (∀ x → isOfHLevel (suc n) (S x)) → ∀ x → isOfHLevel (suc n) (IW S P inX x)
isOfHLevelSuc-IW zero isHS x = isPropIW isHS x
isOfHLevelSuc-IW (suc n) isHS x w w' =
subst (isOfHLevel (suc n)) (λ i → pathEncode w w' (~ i))
isOfHLevelRetractFromIso (suc n) (isoEncode w w')
(isOfHLevelSuc-IW n
(λ (y , v , v') → isHS y (getShape v) (getShape v'))
(x , w , w')
Expand Down
Loading