Skip to content

ailabstw/pubmedkb_core

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pubmedKB core

End-to-end relation extraction for biomedical literature: core annotators

The full pubmedKB-BERN dataset, python API, and web GUI can be downloaded at pubmedKB web

Authors:

  • Peng-Hsuan Li @ ailabs.tw (jacobvsdanniel [at] gmail.com)
  • Ting-Fu Chen @ ailabs.tw (ting830812 [at] gmail.com)

References:

Introduction

  • This is the core annotator behind:

Peng-Hsuan Li, Ting-Fu Chen, Jheng-Ying Yu, Shang-Hung Shih, Chan-Hung Su, Yin-Hung Lin, Huai-Kuang Tsai, Hsueh-Fen Juan, Chien-Yu Chen and Jia-Hsin Huang, pubmedKB: an interactive web server to explore biomedical entity relations from biomedical literature, Nucleic Acids Research, 2022, https://doi.org/10.1093/nar/gkac310

  • It contains 7 modules:
Module Annotation
NER named entity recognition including gene, mutation (variant), disease, drug (chemical)
NEN named entity normalization mapping aliases to unique IDs
POP population extraction "1337 patients"
OR odds ratio extraction "variant: C.3630A>G, disease: PD, OR: 1.37, CI: 1.08-1.73, p-value: 0.008"
SPACY relational phrase extraction "AVED, causes, peripheral neuropathy"
OPENIE relational phrase extraction "pulmonary embolism, cause, pulmonary hypertention
CRE relational fact extraction "513insTT, in-patient, AVED"

  • Or visit our website for our envisioned usage scenario of exploring the knowledge base

website

How to Run

0. Development Environment

  • Python 3.6.9
  • nltk 3.6.7

1. Download large files

Download zip

Uncompress into:

demo_json_dir
├── ner_source.json -> move to model_dir/ner/source.json (if you want to run its demo)
├── nen_source.json -> move to model_dir/nen/source.json (if you want to run its demo)
├── pop_source.json -> move to model_dir/pop/source.json (if you want to run its demo)
├── or_source.json -> move to model_dir/or/source.json (if you want to run its demo)
├── spacy_source.json -> move to model_dir/spacy/source.json (if you want to run its demo)
├── openie_source.json -> move to model_dir/openie/source.json (if you want to run its demo)
└── cre_source.json -> move to model_dir/cre/source.json (if you want to run its demo)
model_bin_dir
├── ner_ner_model_dir -> move to model_dir/ner/ner/model_dir
├── pop_model -> move to model_dir/pop/model
├── or_model -> move to model_dir/or/model
└── cre_rbert_relation_extraction_model -> move to model_dir/cre/rbert_relation_extraction/model

2. Prepare core models

  • Follow the instructions for each module in model_dir
model_dir/
├── ner
├── nen
├── pop
├── or
├── spacy
├── openie
└── cre
  • Be sure to download the nltk punkt model
import nltk
nltk.download("punkt")

3. Create virtual environments

  • Create virtual environments under venv_dir
venv_dir/
├── ner
├── nen
├── pop
├── or
├── spacy
├── openie
└── cre

4. Start nen server

Before running the core pipeline, the nen server must be started.

See the instructions in model_dir/nen/server

4. Demo

See demo.sh

python main.py \
--source_file ./source.json \
--target_dir ./target_dir \
--task ner,pop,or,spacy,nen,cre,openie \
--indent 2

5. Data format

  • pmid, sent_id, sentence, span_list, token_list are required for source files.

Recommended preprocessing to get sentences, span_lists, token_lists from text:

from nltk.tokenize import sent_tokenize
from nltk.tokenize.destructive import NLTKWordTokenizer
tokenizer = NLTKWordTokenizer()
for sentence in sent_tokenize(text):
    try:
        span_sequence = list(tokenizer.span_tokenize(sentence))
        token_sequence = [sentence[i:j] for i, j in span_sequence]
    except ValueError:
        span_sequence = None
        token_sequence = tokenizer.tokenize(sentence)
    data.append({
        "sentence": sentence,
        "span_list": span_sequence,
        "token_list": token_sequence,
    })
  • mention_list, population, odds_ratio, spacy_ore, openie_ore, rbert_cre will be filled for target files.

See each model_dir/[module]/README.md for sample results of each field.

[
    ...
    {
        "pmid": "8602747",
        "sent_id": 6,
        "sentence": "The 2 patients with a severe form of AVED were homozygous with 485delT and 513insTT, respectively, while the patient with a mild form of the disease was compound heterozygous with 513insTT and 574G-->A.",
        "span_list": [[0, 3], [4, 5], [6, 14], [15, 19], [20, 21], [22, 28], [29, 33], [34, 36], [37, 41], [42, 46], [47, 57], [58, 62], [63, 70], [71, 74], [75, 83], [83, 84], [85, 97], [97, 98], [99, 104], [105, 108], [109, 116], [117, 121], [122, 123], [124, 128], [129, 133], [134, 136], [137, 140], [141, 148], [149, 152], [153, 161], [162, 174], [175, 179], [180, 188], [189, 192], [193, 197], [197, 199], [199, 200], [200, 201], [201, 202]],
        "token_list": ["The", "2", "patients", "with", "a", "severe", "form", "of", "AVED", "were", "homozygous", "with", "485delT", "and", "513insTT", ",", "respectively", ",", "while", "the", "patient", "with", "a", "mild", "form", "of", "the", "disease", "was", "compound", "heterozygous", "with", "513insTT", "and", "574G", "--", ">", "A", "."],
        "mention_list": [...],
        "population": [...],
        "odds_ratio": [...],
        "spacy_ore": [...],
        "openie_ore": [...],
        "rbert_cre": [...]
    },
    ...
]

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 89.2%
  • Perl 9.0%
  • Shell 1.8%