Skip to content

Commit

Permalink
Extended docstrings for all public facing functions
Browse files Browse the repository at this point in the history
  • Loading branch information
alasdairwilson committed Jul 11, 2024
1 parent 1dceff9 commit 384713c
Show file tree
Hide file tree
Showing 6 changed files with 672 additions and 206 deletions.
124 changes: 102 additions & 22 deletions ripplemapper/analyse.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
"""Mostly a collection of functions to help instantiate a list of image classes and add some contours"""

import warnings

import cv2
Expand All @@ -13,14 +14,31 @@


def add_boundary_contours(ripple_images: list[RippleImage] | RippleImage | RippleImageSeries, overwrite: bool = False, level=None, **kwargs) -> list[RippleImage]:
"""Add boundary contours to a list of RippleImage objects."""
"""
Add boundary contours to a list of RippleImage objects.
Parameters
----------
ripple_images : list[RippleImage] | RippleImage | RippleImageSeries
A list of RippleImage objects or a single RippleImage or RippleImageSeries.
overwrite : bool, optional
Whether to overwrite existing boundary contours, by default False.
level : optional
Contour level parameter for the find_contours function, by default None.
**kwargs
Additional keyword arguments for the find_contours function.
Returns
-------
list[RippleImage]
The list of RippleImage objects with added boundary contours.
"""
if isinstance(ripple_images, RippleImageSeries):
ripple_images = ripple_images.images
if isinstance(ripple_images, RippleImage):
ripple_images = [ripple_images]
for ripple_image in ripple_images:
if len(ripple_image.contours) > 0:
# TODO: refactor to use new get_contour method
indexes = []
for i in range(len(ripple_image.contours)):
if ripple_image.contours[i].method == 'Upper Boundary':
Expand All @@ -34,20 +52,40 @@ def add_boundary_contours(ripple_images: list[RippleImage] | RippleImage | Rippl
ripple_image.contours.pop(indexes[0])
if len(indexes) == 2:
ripple_image.contours.pop(indexes[0])
# they have now moved by 1.
ripple_image.contours.pop(indexes[1]-1)
ripple_image.contours.pop(indexes[1] - 1)
else:
warnings.warn(f"Boundary contours already exist, skipping image: {ripple_image.source_file}")
continue
edges = detect_edges(ripple_image.image)
processed_edges = process_edges(edges)
contours = find_contours(processed_edges, level=level)
ripple_image.add_contour(np.array([contours[0][:,0],contours[0][:,1]]), 'Upper Boundary')
ripple_image.add_contour(np.array([contours[1][:,0],contours[1][:,1]]), 'Lower Boundary')
ripple_image.add_contour(np.array([contours[0][:, 0], contours[0][:, 1]]), 'Upper Boundary')
ripple_image.add_contour(np.array([contours[1][:, 0], contours[1][:, 1]]), 'Lower Boundary')


def add_a_star_contours(ripple_images: list[RippleImage] | RippleImage | RippleImageSeries, contour_index: list[int] = [0, 1], overwrite: bool = False) -> list[RippleImage]:
"""
Add A* contours to a list of RippleImage objects.
def add_a_star_contours(ripple_images: list[RippleImage] | RippleImage | RippleImageSeries, contour_index: list[int]=[0,1], overwrite:bool=False) -> list[RippleImage]:
"""Add A* contours to a list of RippleImage objects."""
Parameters
----------
ripple_images : list[RippleImage] | RippleImage | RippleImageSeries
A list of RippleImage objects or a single RippleImage or RippleImageSeries.
contour_index : list[int], optional
List of two integers indicating which contours to use, by default [0, 1].
overwrite : bool, optional
Whether to overwrite existing A* contours, by default False.
Returns
-------
list[RippleImage]
The list of RippleImage objects with added A* contours.
Raises
------
ValueError
If contour_index does not have exactly two integers.
"""
if len(contour_index) != 2:
raise ValueError("contour_index must be a list of two integers.")
if isinstance(ripple_images, RippleImageSeries):
Expand All @@ -58,17 +96,13 @@ def add_a_star_contours(ripple_images: list[RippleImage] | RippleImage | RippleI
if len(ripple_image.contours) < 2:
warnings.warn(f"RippleImage object must have at least two contours, skipping image: {ripple_image.source_file}")
continue
# TODO: refactor to use new get_contour method
methods = [contour.method for contour in ripple_image.contours]
if 'A* traversal' in methods:
if overwrite:
warnings.warn(f"Overwriting A* contour for image: {ripple_image.source_file}")
# find me the method index that matches 'A* traversal'
for contour in ripple_image.contours:
print(contour.method)
if contour.method == 'A* traversal':
ripple_image.contours.remove(contour)
print(ripple_image.contours)
else:
warnings.warn(f"A* contour already exists, skipping image: {ripple_image.source_file}")
continue
Expand All @@ -79,22 +113,38 @@ def add_a_star_contours(ripple_images: list[RippleImage] | RippleImage | RippleI
bounded_img = np.zeros(ripple_image.image.shape, dtype=np.uint8)
bounded_img = cv2.drawContours(bounded_img, [contour], 0, (255, 255, 255), -1)
d_map = distance_map(bounded_img)
start = (np.argmax(d_map[:,0]), 0) # Pixel with the highest value on the left.
goal = (np.argmax(d_map[:, -1]), d_map.shape[1] - 1) # Highest value on the right.
start = (np.argmax(d_map[:, 0]), 0)
goal = (np.argmax(d_map[:, -1]), d_map.shape[1] - 1)
path = a_star(start, goal, d_map)
# return type from my a_star function is a list of tuples, need to convert it to a numpy array
path = np.flip(np.array(path), axis=0).T # the path output has insane shape, need to flip it
path = np.flip(np.array(path), axis=0).T
ripple_image.add_contour(path, 'A* traversal')


def add_chan_vese_contours(ripple_images: list[RippleImage] | RippleImage | RippleImageSeries, overwrite: bool = False, use_gradients=False, **kwargs):
"""Add Chan-Vese contours to a list of RippleImage objects."""
"""
Add Chan-Vese contours to a list of RippleImage objects.
Parameters
----------
ripple_images : list[RippleImage] | RippleImage | RippleImageSeries
A list of RippleImage objects or a single RippleImage or RippleImageSeries.
overwrite : bool, optional
Whether to overwrite existing Chan-Vese contours, by default False.
use_gradients : bool, optional
Whether to use image gradients, by default False.
**kwargs
Additional keyword arguments for the cv_segmentation function.
Returns
-------
None
"""
if isinstance(ripple_images, RippleImageSeries):
ripple_images = ripple_images.images
if isinstance(ripple_images, RippleImage):
ripple_images = [ripple_images]
for ripple_image in ripple_images:
if len(ripple_image.contours) > 0:
# TODO: refactor to use new get_contour method
methods = [contour.method for contour in ripple_image.contours]
if 'Chan-Vese' in methods:
if overwrite:
Expand All @@ -107,19 +157,49 @@ def add_chan_vese_contours(ripple_images: list[RippleImage] | RippleImage | Ripp
continue
if use_gradients:
grad = np.sum(np.abs(np.gradient(ripple_image.image)), axis=0)
img = cv2.GaussianBlur(grad / np.max(grad), (7,7), 0)+(1-(ripple_image.image/np.max(ripple_image.image)))
img = cv2.GaussianBlur(grad / np.max(grad), (7, 7), 0) + (1 - (ripple_image.image / np.max(ripple_image.image)))
cv = cv_segmentation(img, **kwargs)
else:
cv = cv_segmentation(ripple_image.image, **kwargs)
contours = find_contours(cv)
ripple_image.add_contour(np.array([contours[0][:,0],contours[0][:,1]]), 'Chan-Vese')
ripple_image.add_contour(np.array([contours[0][:, 0], contours[0][:, 1]]), 'Chan-Vese')


def remove_small_bumps(contour: RippleContour, **kwargs) -> RippleContour:
"""Remove small bumps from a RippleContour object."""
"""
Remove small bumps from a RippleContour object.
Parameters
----------
contour : RippleContour
A RippleContour object to be smoothed.
**kwargs
Additional keyword arguments for the smooth_bumps function.
Returns
-------
RippleContour
The smoothed RippleContour object.
"""
return smooth_bumps(contour, **kwargs)


def remove_small_bumps_from_images(ripple_images: list[RippleImage] | RippleImage, **kwargs) -> list[RippleImage]:
"""Remove small bumps from a list of RippleImage objects."""
"""
Remove small bumps from a list of RippleImage objects.
Parameters
----------
ripple_images : list[RippleImage] | RippleImage
A list of RippleImage objects or a single RippleImage.
**kwargs
Additional keyword arguments for the remove_small_bumps function.
Returns
-------
list[RippleImage]
The list of RippleImage objects with smoothed contours.
"""
if isinstance(ripple_images, RippleImageSeries):
ripple_images = ripple_images.images
if isinstance(ripple_images, RippleImage):
Expand Down
Loading

0 comments on commit 384713c

Please sign in to comment.