Skip to content

Commit

Permalink
Build 2024-12-08 05:10:24. 7dc3840. Event: schedule.
Browse files Browse the repository at this point in the history
  • Loading branch information
actions-user committed Dec 8, 2024
1 parent c66d1cb commit 7e5eba0
Show file tree
Hide file tree
Showing 14 changed files with 22 additions and 20 deletions.
2 changes: 1 addition & 1 deletion 404.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion 404/index.html

Large diffs are not rendered by default.

1 change: 1 addition & 0 deletions _next/static/_N3u3skBTFAHpWzb2jYDN/_buildManifest.js

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

1 change: 1 addition & 0 deletions _next/static/_N3u3skBTFAHpWzb2jYDN/_ssgManifest.js
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
self.__SSG_MANIFEST=new Set([]);self.__SSG_MANIFEST_CB&&self.__SSG_MANIFEST_CB()

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions docs/api_reference/augmentations/transforms/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -5804,7 +5804,7 @@
</span><span id=__span-0-128><a id=__codelineno-0-128 name=__codelineno-0-128></a><a href=#__codelineno-0-128><span class=linenos data-linenos="128 "></span></a>
</span><span id=__span-0-129><a id=__codelineno-0-129 name=__codelineno-0-129></a><a href=#__codelineno-0-129><span class=linenos data-linenos="129 "></span></a> <span class=k>def</span> <span class=nf>get_transform_init_args_names</span><span class=p>(</span><span class=bp>self</span><span class=p>)</span> <span class=o>-&gt;</span> <span class=nb>tuple</span><span class=p>[</span><span class=nb>str</span><span class=p>,</span> <span class=o>...</span><span class=p>]:</span>
</span><span id=__span-0-130><a id=__codelineno-0-130 name=__codelineno-0-130></a><a href=#__codelineno-0-130><span class=linenos data-linenos="130 "></span></a> <span class=k>return</span> <span class=s2>&quot;amount&quot;</span><span class=p>,</span> <span class=s2>&quot;salt_vs_pepper&quot;</span>
</span></code></pre></div> </details> </div> </div> <div class="doc doc-object doc-class"> <h2 id=albumentations.augmentations.transforms.Sharpen class="doc doc-heading" data-toc-label=Sharpen> <code>class <strong> Sharpen</strong></code> <code> (alpha=(0.2, 0.5), lightness=(0.5, 1.0), method=&#39;kernel&#39;, kernel_size=5, sigma=1.0, p=0.5, always_apply=None) </code> <span class=doc-github-link> <a href=https://github.com/albumentations-team/albumentations/blob/main/albumentations/augmentations/transforms.py#L20 target=_blank>[view source on GitHub]</a> </span><a class=headerlink href=#albumentations.augmentations.transforms.Sharpen title="Permanent link">¶</a> </h2> <div class=class-signature> </div> <div class="doc doc-contents "> <p>Sharpen the input image using either kernel-based or Gaussian interpolation method.</p> <p>Implements two different approaches to image sharpening: 1. Traditional kernel-based method using Laplacian operator 2. Gaussian interpolation method (similar to Kornia's approach)</p> <p><strong>Parameters:</strong></p> <table> <thead> <tr> <th>Name</th> <th>Type</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td><code>alpha</code></td> <td><code>tuple[float, float]</code></td> <td><p>Range for the visibility of sharpening effect. At 0, only the original image is visible, at 1.0 only its processed version is visible. Values should be in the range [0, 1]. Used in both methods. Default: (0.2, 0.5).</p></td> </tr> <tr> <td><code>lightness</code></td> <td><code>tuple[float, float]</code></td> <td><p>Range for the lightness of the sharpened image. Only used in 'kernel' method. Larger values create higher contrast. Values should be greater than 0. Default: (0.5, 1.0).</p></td> </tr> <tr> <td><code>method</code></td> <td><code>str</code></td> <td><p>Sharpening algorithm to use: - 'kernel': Traditional kernel-based sharpening using Laplacian operator - 'gaussian': Interpolation between Gaussian blurred and original image Default: 'kernel'</p></td> </tr> <tr> <td><code>kernel_size</code></td> <td><code>int</code></td> <td><p>Size of the Gaussian blur kernel for 'gaussian' method. Must be odd. Default: 5</p></td> </tr> <tr> <td><code>sigma</code></td> <td><code>float</code></td> <td><p>Standard deviation for Gaussian kernel in 'gaussian' method. Default: 1.0</p></td> </tr> <tr> <td><code>p</code></td> <td><code>float</code></td> <td><p>Probability of applying the transform. Default: 0.5.</p></td> </tr> </tbody> </table> <p>Image types: uint8, float32</p> <p>Number of channels: Any</p> <p>Mathematical Formulation: 1. Kernel Method: The sharpening operation is based on the Laplacian operator L: L = [[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]]</p> <div class=codehilite><pre><span></span><code> The final kernel K is a weighted sum:
</span></code></pre></div> </details> </div> </div> <div class="doc doc-object doc-class"> <h2 id=albumentations.augmentations.transforms.Sharpen class="doc doc-heading" data-toc-label=Sharpen> <code>class <strong> Sharpen</strong></code> <code> (alpha=(0.2, 0.5), lightness=(0.5, 1.0), method=&#39;kernel&#39;, kernel_size=5, sigma=1.0, p=0.5, always_apply=None) </code> <span class=doc-github-link> <a href=https://github.com/albumentations-team/albumentations/blob/main/albumentations/augmentations/transforms.py#L20 target=_blank>[view source on GitHub]</a> </span><a class=headerlink href=#albumentations.augmentations.transforms.Sharpen title="Permanent link">¶</a> </h2> <div class=class-signature> </div> <div class="doc doc-contents "> <p>Sharpen the input image using either kernel-based or Gaussian interpolation method.</p> <p>Implements two different approaches to image sharpening: 1. Traditional kernel-based method using Laplacian operator 2. Gaussian interpolation method (similar to Kornia's approach)</p> <p><strong>Parameters:</strong></p> <table> <thead> <tr> <th>Name</th> <th>Type</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td><code>alpha</code></td> <td><code>tuple[float, float]</code></td> <td><p>Range for the visibility of sharpening effect. At 0, only the original image is visible, at 1.0 only its processed version is visible. Values should be in the range [0, 1]. Used in both methods. Default: (0.2, 0.5).</p></td> </tr> <tr> <td><code>lightness</code></td> <td><code>tuple[float, float]</code></td> <td><p>Range for the lightness of the sharpened image. Only used in 'kernel' method. Larger values create higher contrast. Values should be greater than 0. Default: (0.5, 1.0).</p></td> </tr> <tr> <td><code>method</code></td> <td><code>Literal[&#39;kernel&#39;, &#39;gaussian&#39;]</code></td> <td><p>Sharpening algorithm to use: - 'kernel': Traditional kernel-based sharpening using Laplacian operator - 'gaussian': Interpolation between Gaussian blurred and original image Default: 'kernel'</p></td> </tr> <tr> <td><code>kernel_size</code></td> <td><code>int</code></td> <td><p>Size of the Gaussian blur kernel for 'gaussian' method. Must be odd. Default: 5</p></td> </tr> <tr> <td><code>sigma</code></td> <td><code>float</code></td> <td><p>Standard deviation for Gaussian kernel in 'gaussian' method. Default: 1.0</p></td> </tr> <tr> <td><code>p</code></td> <td><code>float</code></td> <td><p>Probability of applying the transform. Default: 0.5.</p></td> </tr> </tbody> </table> <p>Image types: uint8, float32</p> <p>Number of channels: Any</p> <p>Mathematical Formulation: 1. Kernel Method: The sharpening operation is based on the Laplacian operator L: L = [[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]]</p> <div class=codehilite><pre><span></span><code> The final kernel K is a weighted sum:
K = (1 - a)I + a(L + λI)

where:
Expand Down Expand Up @@ -5858,7 +5858,7 @@
</span><span id=__span-0-15><a id=__codelineno-0-15 name=__codelineno-0-15></a><a href=#__codelineno-0-15><span class=linenos data-linenos=" 15 "></span></a><span class=sd> Only used in &#39;kernel&#39; method. Larger values create higher contrast.</span>
</span><span id=__span-0-16><a id=__codelineno-0-16 name=__codelineno-0-16></a><a href=#__codelineno-0-16><span class=linenos data-linenos=" 16 "></span></a><span class=sd> Values should be greater than 0. Default: (0.5, 1.0).</span>
</span><span id=__span-0-17><a id=__codelineno-0-17 name=__codelineno-0-17></a><a href=#__codelineno-0-17><span class=linenos data-linenos=" 17 "></span></a>
</span><span id=__span-0-18><a id=__codelineno-0-18 name=__codelineno-0-18></a><a href=#__codelineno-0-18><span class=linenos data-linenos=" 18 "></span></a><span class=sd> method (str): Sharpening algorithm to use:</span>
</span><span id=__span-0-18><a id=__codelineno-0-18 name=__codelineno-0-18></a><a href=#__codelineno-0-18><span class=linenos data-linenos=" 18 "></span></a><span class=sd> method (Literal[&#39;kernel&#39;, &#39;gaussian&#39;]): Sharpening algorithm to use:</span>
</span><span id=__span-0-19><a id=__codelineno-0-19 name=__codelineno-0-19></a><a href=#__codelineno-0-19><span class=linenos data-linenos=" 19 "></span></a><span class=sd> - &#39;kernel&#39;: Traditional kernel-based sharpening using Laplacian operator</span>
</span><span id=__span-0-20><a id=__codelineno-0-20 name=__codelineno-0-20></a><a href=#__codelineno-0-20><span class=linenos data-linenos=" 20 "></span></a><span class=sd> - &#39;gaussian&#39;: Interpolation between Gaussian blurred and original image</span>
</span><span id=__span-0-21><a id=__codelineno-0-21 name=__codelineno-0-21></a><a href=#__codelineno-0-21><span class=linenos data-linenos=" 21 "></span></a><span class=sd> Default: &#39;kernel&#39;</span>
Expand Down
Loading

0 comments on commit 7e5eba0

Please sign in to comment.