- Support Our Work
- Transforms
- Core
- Benchmark
- Speedups
Support Our Work
- Love the library? You can contribute to its development by becoming a sponsor for the library. Your support is invaluable, and every contribution makes a difference.
- Haven't starred our repo yet? Show your support with a ⭐! It's just only one mouse click away.
- Got ideas or facing issues? We'd love to hear from you. Share your thoughts in our issues or join the conversation on our Discord server
Transforms
Auto padding in crops
Added option to pad the image if crop size is larger than the crop size
Old way
[
A.PadIfNeeded(min_height=1024, min_width=1024, p=1),
A.RandomCrop(height=1204, width=1024, p=1)
]
New way:
A.RandomCrop(height=1204, width=1024, p=1, pad_if_needed=True)
Works for:
You may also use it to pad image to a desired size.
Core
Random state
Now random state for the pipeline does not depend on the global random state
Before
random.seed(seed)
np.random.seed(seed)
transform = A.Compose(...)
Now
transform = A.Compose(seed=seed, ...)
or
transform = A.Compose(...)
transform.set_random_seed(seed)
Saving used parameters
Now you can get exact parameters that were used in the pipeline on a given sample with
transform = A.Compose(save_applied_params=True, ...)
result = transform(image=image, bboxes=bboxes, mask=mask, keypoints=keypoints)
print(result["applied_transforms"])
Benchmark
Moved benchmark to a separate repo
https://github.com/albumentations-team/benchmark/
Current result for uint8 images:
Transform | albumentations 1.4.20 |
augly 1.0.0 |
imgaug 0.4.0 |
kornia 0.7.3 |
torchvision 0.20.0 |
---|---|---|---|---|---|
HorizontalFlip | 8325 ± 955 | 4807 ± 818 | 6042 ± 788 | 390 ± 106 | 914 ± 67 |
VerticalFlip | 20493 ± 1134 | 9153 ± 1291 | 10931 ± 1844 | 1212 ± 402 | 3198 ± 200 |
Rotate | 1272 ± 12 | 1119 ± 41 | 1136 ± 218 | 143 ± 11 | 181 ± 11 |
Affine | 967 ± 3 | - | 774 ± 97 | 147 ± 9 | 130 ± 12 |
Equalize | 961 ± 4 | - | 581 ± 54 | 152 ± 19 | 479 ± 12 |
RandomCrop80 | 118946 ± 741 | 25272 ± 1822 | 11503 ± 441 | 1510 ± 230 | 32109 ± 1241 |
ShiftRGB | 1873 ± 252 | - | 1582 ± 65 | - | - |
Resize | 2365 ± 153 | 611 ± 78 | 1806 ± 63 | 232 ± 24 | 195 ± 4 |
RandomGamma | 8608 ± 220 | - | 2318 ± 269 | 108 ± 13 | - |
Grayscale | 3050 ± 597 | 2720 ± 932 | 1681 ± 156 | 289 ± 75 | 1838 ± 130 |
RandomPerspective | 410 ± 20 | - | 554 ± 22 | 86 ± 11 | 96 ± 5 |
GaussianBlur | 1734 ± 204 | 242 ± 4 | 1090 ± 65 | 176 ± 18 | 79 ± 3 |
MedianBlur | 862 ± 30 | - | 813 ± 30 | 5 ± 0 | - |
MotionBlur | 2975 ± 52 | - | 612 ± 18 | 73 ± 2 | - |
Posterize | 5214 ± 101 | - | 2097 ± 68 | 430 ± 49 | 3196 ± 185 |
JpegCompression | 845 ± 61 | 778 ± 5 | 459 ± 35 | 71 ± 3 | 625 ± 17 |
GaussianNoise | 147 ± 10 | 67 ± 2 | 206 ± 11 | 75 ± 1 | - |
Elastic | 171 ± 15 | - | 235 ± 20 | 1 ± 0 | 2 ± 0 |
Clahe | 423 ± 10 | - | 335 ± 43 | 94 ± 9 | - |
CoarseDropout | 11288 ± 609 | - | 671 ± 38 | 536 ± 87 | - |
Blur | 4816 ± 59 | 246 ± 3 | 3807 ± 325 | - | - |
ColorJitter | 536 ± 41 | 255 ± 13 | - | 55 ± 18 | 46 ± 2 |
Brightness | 4443 ± 84 | 1163 ± 86 | - | 472 ± 101 | 429 ± 20 |
Contrast | 4398 ± 143 | 736 ± 79 | - | 425 ± 52 | 335 ± 35 |
RandomResizedCrop | 2952 ± 24 | - | - | 287 ± 58 | 511 ± 10 |
Normalize | 1016 ± 84 | - | - | 626 ± 40 | 519 ± 12 |
PlankianJitter | 1844 ± 208 | - | - | 813 ± 211 | - |
Speedups
- Speedup in PlankianJitter in uint8 mode
- Replaced
cv2.addWeighted
withwsum
from simsimd package