-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathriscv_alu.sv
1271 lines (1060 loc) · 43.5 KB
/
riscv_alu.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2018 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
////////////////////////////////////////////////////////////////////////////////
// Engineer: Matthias Baer - [email protected] //
// //
// Additional contributions by: //
// Igor Loi - [email protected] //
// Andreas Traber - [email protected] //
// Michael Gautschi - [email protected] //
// Davide Schiavone - [email protected] //
// //
// Design Name: ALU //
// Project Name: RI5CY //
// Language: SystemVerilog //
// //
// Description: Arithmetic logic unit of the pipelined processor //
// supports FP-comparisons, classifications if FPU is defined //
// //
////////////////////////////////////////////////////////////////////////////////
import riscv_defines::*;
module riscv_alu
#(
parameter SHARED_INT_DIV = 0,
parameter FPU = 0
)(
input logic clk,
input logic rst_n,
input logic enable_i,
input logic [ALU_OP_WIDTH-1:0] operator_i,
input logic [31:0] operand_a_i,
input logic [31:0] operand_b_i,
input logic [31:0] operand_c_i,
input logic [ 1:0] vector_mode_i,
input logic [ 4:0] bmask_a_i,
input logic [ 4:0] bmask_b_i,
input logic [ 1:0] imm_vec_ext_i,
input logic is_clpx_i,
input logic is_subrot_i,
input logic [ 1:0] clpx_shift_i,
output logic [31:0] result_o,
output logic comparison_result_o,
output logic ready_o,
input logic ex_ready_i
);
logic [31:0] operand_a_rev;
logic [31:0] operand_a_neg;
logic [31:0] operand_a_neg_rev;
assign operand_a_neg = ~operand_a_i;
// bit reverse operand_a for left shifts and bit counting
generate
genvar k;
for(k = 0; k < 32; k++)
begin
assign operand_a_rev[k] = operand_a_i[31-k];
end
endgenerate
// bit reverse operand_a_neg for left shifts and bit counting
generate
genvar m;
for(m = 0; m < 32; m++)
begin
assign operand_a_neg_rev[m] = operand_a_neg[31-m];
end
endgenerate
logic [31:0] operand_b_neg;
assign operand_b_neg = ~operand_b_i;
logic [5:0] div_shift;
logic div_valid;
logic [31:0] bmask;
//////////////////////////////////////////////////////////////////////////////////////////
// ____ _ _ _ _ _ _ _ _ //
// | _ \ __ _ _ __| |_(_) |_(_) ___ _ __ ___ __| | / \ __| | __| | ___ _ __ //
// | |_) / _` | '__| __| | __| |/ _ \| '_ \ / _ \/ _` | / _ \ / _` |/ _` |/ _ \ '__| //
// | __/ (_| | | | |_| | |_| | (_) | | | | __/ (_| | / ___ \ (_| | (_| | __/ | //
// |_| \__,_|_| \__|_|\__|_|\___/|_| |_|\___|\__,_| /_/ \_\__,_|\__,_|\___|_| //
// //
//////////////////////////////////////////////////////////////////////////////////////////
logic adder_op_b_negate;
logic [31:0] adder_op_a, adder_op_b;
logic [35:0] adder_in_a, adder_in_b;
logic [31:0] adder_result;
logic [36:0] adder_result_expanded;
assign adder_op_b_negate = (operator_i == ALU_SUB) || (operator_i == ALU_SUBR) ||
(operator_i == ALU_SUBU) || (operator_i == ALU_SUBUR) || is_subrot_i;
// prepare operand a
assign adder_op_a = (operator_i == ALU_ABS) ? operand_a_neg : ( is_subrot_i ? {operand_b_i[15:0], operand_a_i[31:16]} : operand_a_i );
// prepare operand b
assign adder_op_b = adder_op_b_negate ? ( is_subrot_i ? ~{operand_a_i[15:0], operand_b_i[31:16]} : operand_b_neg ) : operand_b_i;
// prepare carry
always_comb
begin
adder_in_a[ 0] = 1'b1;
adder_in_a[ 8: 1] = adder_op_a[ 7: 0];
adder_in_a[ 9] = 1'b1;
adder_in_a[17:10] = adder_op_a[15: 8];
adder_in_a[ 18] = 1'b1;
adder_in_a[26:19] = adder_op_a[23:16];
adder_in_a[ 27] = 1'b1;
adder_in_a[35:28] = adder_op_a[31:24];
adder_in_b[ 0] = 1'b0;
adder_in_b[ 8: 1] = adder_op_b[ 7: 0];
adder_in_b[ 9] = 1'b0;
adder_in_b[17:10] = adder_op_b[15: 8];
adder_in_b[ 18] = 1'b0;
adder_in_b[26:19] = adder_op_b[23:16];
adder_in_b[ 27] = 1'b0;
adder_in_b[35:28] = adder_op_b[31:24];
if (adder_op_b_negate || (operator_i == ALU_ABS || operator_i == ALU_CLIP)) begin
// special case for subtractions and absolute number calculations
adder_in_b[0] = 1'b1;
case (vector_mode_i)
VEC_MODE16: begin
adder_in_b[18] = 1'b1;
end
VEC_MODE8: begin
adder_in_b[ 9] = 1'b1;
adder_in_b[18] = 1'b1;
adder_in_b[27] = 1'b1;
end
endcase
end else begin
// take care of partitioning the adder for the addition case
case (vector_mode_i)
VEC_MODE16: begin
adder_in_a[18] = 1'b0;
end
VEC_MODE8: begin
adder_in_a[ 9] = 1'b0;
adder_in_a[18] = 1'b0;
adder_in_a[27] = 1'b0;
end
endcase
end
end
// actual adder
assign adder_result_expanded = $signed(adder_in_a) + $signed(adder_in_b);
assign adder_result = {adder_result_expanded[35:28],
adder_result_expanded[26:19],
adder_result_expanded[17:10],
adder_result_expanded[8:1]};
// normalization stage
logic [31:0] adder_round_value;
logic [31:0] adder_round_result;
assign adder_round_value = ((operator_i == ALU_ADDR) || (operator_i == ALU_SUBR) ||
(operator_i == ALU_ADDUR) || (operator_i == ALU_SUBUR)) ?
{1'b0, bmask[31:1]} : '0;
assign adder_round_result = adder_result + adder_round_value;
////////////////////////////////////////
// ____ _ _ ___ _____ _____ //
// / ___|| | | |_ _| ___|_ _| //
// \___ \| |_| || || |_ | | //
// ___) | _ || || _| | | //
// |____/|_| |_|___|_| |_| //
// //
////////////////////////////////////////
logic shift_left; // should we shift left
logic shift_use_round;
logic shift_arithmetic;
logic [31:0] shift_amt_left; // amount of shift, if to the left
logic [31:0] shift_amt; // amount of shift, to the right
logic [31:0] shift_amt_int; // amount of shift, used for the actual shifters
logic [31:0] shift_amt_norm; // amount of shift, used for normalization
logic [31:0] shift_op_a; // input of the shifter
logic [31:0] shift_result;
logic [31:0] shift_right_result;
logic [31:0] shift_left_result;
logic [15:0] clpx_shift_ex;
// shifter is also used for preparing operand for division
assign shift_amt = div_valid ? div_shift : operand_b_i;
// by reversing the bits of the input, we also have to reverse the order of shift amounts
always_comb
begin
case(vector_mode_i)
VEC_MODE16:
begin
shift_amt_left[15: 0] = shift_amt[31:16];
shift_amt_left[31:16] = shift_amt[15: 0];
end
VEC_MODE8:
begin
shift_amt_left[ 7: 0] = shift_amt[31:24];
shift_amt_left[15: 8] = shift_amt[23:16];
shift_amt_left[23:16] = shift_amt[15: 8];
shift_amt_left[31:24] = shift_amt[ 7: 0];
end
default: // VEC_MODE32
begin
shift_amt_left[31: 0] = shift_amt[31: 0];
end
endcase
end
// ALU_FL1 and ALU_CBL are used for the bit counting ops later
assign shift_left = (operator_i == ALU_SLL) || (operator_i == ALU_BINS) ||
(operator_i == ALU_FL1) || (operator_i == ALU_CLB) ||
(operator_i == ALU_DIV) || (operator_i == ALU_DIVU) ||
(operator_i == ALU_REM) || (operator_i == ALU_REMU) ||
(operator_i == ALU_BREV);
assign shift_use_round = (operator_i == ALU_ADD) || (operator_i == ALU_SUB) ||
(operator_i == ALU_ADDR) || (operator_i == ALU_SUBR) ||
(operator_i == ALU_ADDU) || (operator_i == ALU_SUBU) ||
(operator_i == ALU_ADDUR) || (operator_i == ALU_SUBUR);
assign shift_arithmetic = (operator_i == ALU_SRA) || (operator_i == ALU_BEXT) ||
(operator_i == ALU_ADD) || (operator_i == ALU_SUB) ||
(operator_i == ALU_ADDR) || (operator_i == ALU_SUBR);
// choose the bit reversed or the normal input for shift operand a
assign shift_op_a = shift_left ? operand_a_rev :
(shift_use_round ? adder_round_result : operand_a_i);
assign shift_amt_int = shift_use_round ? shift_amt_norm :
(shift_left ? shift_amt_left : shift_amt);
assign shift_amt_norm = is_clpx_i ? {clpx_shift_ex,clpx_shift_ex} : {4{3'b000, bmask_b_i}};
assign clpx_shift_ex = $unsigned(clpx_shift_i);
// right shifts, we let the synthesizer optimize this
logic [63:0] shift_op_a_32;
assign shift_op_a_32 = (operator_i == ALU_ROR) ? {shift_op_a, shift_op_a} : $signed({ {32{shift_arithmetic & shift_op_a[31]}}, shift_op_a});
always_comb
begin
case(vector_mode_i)
VEC_MODE16:
begin
shift_right_result[31:16] = $signed( {shift_arithmetic & shift_op_a[31], shift_op_a[31:16] }) >>> shift_amt_int[19:16];
shift_right_result[15: 0] = $signed( {shift_arithmetic & shift_op_a[15], shift_op_a[15: 0] }) >>> shift_amt_int[ 3: 0];
end
VEC_MODE8:
begin
shift_right_result[31:24] = $signed( {shift_arithmetic & shift_op_a[31], shift_op_a[31:24] }) >>> shift_amt_int[26:24];
shift_right_result[23:16] = $signed( {shift_arithmetic & shift_op_a[23], shift_op_a[23:16] }) >>> shift_amt_int[18:16];
shift_right_result[15: 8] = $signed( {shift_arithmetic & shift_op_a[15], shift_op_a[15: 8] }) >>> shift_amt_int[10: 8];
shift_right_result[ 7: 0] = $signed( {shift_arithmetic & shift_op_a[ 7], shift_op_a[ 7: 0] }) >>> shift_amt_int[ 2: 0];
end
default: // VEC_MODE32
begin
shift_right_result = shift_op_a_32 >> shift_amt_int[4:0];
end
endcase; // case (vec_mode_i)
end
// bit reverse the shift_right_result for left shifts
genvar j;
generate
for(j = 0; j < 32; j++)
begin
assign shift_left_result[j] = shift_right_result[31-j];
end
endgenerate
assign shift_result = shift_left ? shift_left_result : shift_right_result;
//////////////////////////////////////////////////////////////////
// ____ ___ __ __ ____ _ ____ ___ ____ ___ _ _ //
// / ___/ _ \| \/ | _ \ / \ | _ \|_ _/ ___| / _ \| \ | | //
// | | | | | | |\/| | |_) / _ \ | |_) || |\___ \| | | | \| | //
// | |__| |_| | | | | __/ ___ \| _ < | | ___) | |_| | |\ | //
// \____\___/|_| |_|_| /_/ \_\_| \_\___|____/ \___/|_| \_| //
// //
//////////////////////////////////////////////////////////////////
logic [3:0] is_equal;
logic [3:0] is_greater; // handles both signed and unsigned forms
logic [3:0] f_is_greater; // for floats, only signed and *no vectors*,
// inverted for two negative numbers
// 8-bit vector comparisons, basic building blocks
logic [3:0] cmp_signed;
logic [3:0] is_equal_vec;
logic [3:0] is_greater_vec;
logic [31:0] operand_b_eq;
logic is_equal_clip;
//second == comparator for CLIP instructions
always_comb
begin
operand_b_eq = operand_b_neg;
if(operator_i == ALU_CLIPU)
operand_b_eq = '0;
else
operand_b_eq = operand_b_neg;
end
assign is_equal_clip = operand_a_i == operand_b_eq;
always_comb
begin
cmp_signed = 4'b0;
unique case (operator_i)
ALU_GTS,
ALU_GES,
ALU_LTS,
ALU_LES,
ALU_SLTS,
ALU_SLETS,
ALU_MIN,
ALU_MAX,
ALU_ABS,
ALU_CLIP,
ALU_CLIPU,
ALU_FLE,
ALU_FLT,
ALU_FMAX,
ALU_FMIN: begin
case (vector_mode_i)
VEC_MODE8: cmp_signed[3:0] = 4'b1111;
VEC_MODE16: cmp_signed[3:0] = 4'b1010;
default: cmp_signed[3:0] = 4'b1000;
endcase
end
default:;
endcase
end
// generate vector equal and greater than signals, cmp_signed decides if the
// comparison is done signed or unsigned
genvar i;
generate
for(i = 0; i < 4; i++)
begin
assign is_equal_vec[i] = (operand_a_i[8*i+7:8*i] == operand_b_i[8*i+7:i*8]);
assign is_greater_vec[i] = $signed({operand_a_i[8*i+7] & cmp_signed[i], operand_a_i[8*i+7:8*i]})
>
$signed({operand_b_i[8*i+7] & cmp_signed[i], operand_b_i[8*i+7:i*8]});
end
endgenerate
// generate the real equal and greater than signals that take the vector
// mode into account
always_comb
begin
// 32-bit mode
is_equal[3:0] = {4{is_equal_vec[3] & is_equal_vec[2] & is_equal_vec[1] & is_equal_vec[0]}};
is_greater[3:0] = {4{is_greater_vec[3] | (is_equal_vec[3] & (is_greater_vec[2]
| (is_equal_vec[2] & (is_greater_vec[1]
| (is_equal_vec[1] & (is_greater_vec[0]))))))}};
case(vector_mode_i)
VEC_MODE16:
begin
is_equal[1:0] = {2{is_equal_vec[0] & is_equal_vec[1]}};
is_equal[3:2] = {2{is_equal_vec[2] & is_equal_vec[3]}};
is_greater[1:0] = {2{is_greater_vec[1] | (is_equal_vec[1] & is_greater_vec[0])}};
is_greater[3:2] = {2{is_greater_vec[3] | (is_equal_vec[3] & is_greater_vec[2])}};
end
VEC_MODE8:
begin
is_equal[3:0] = is_equal_vec[3:0];
is_greater[3:0] = is_greater_vec[3:0];
end
default:; // see default assignment
endcase
end
// generate the floating point greater signal, inverted for two negative numbers
// (but not for identical numbers)
assign f_is_greater[3:0] = {4{is_greater[3] ^ (operand_a_i[31] & operand_b_i[31] & !is_equal[3])}};
// generate comparison result
logic [3:0] cmp_result;
logic f_is_qnan;
logic f_is_snan;
logic [3:0] f_is_nan;
always_comb
begin
cmp_result = is_equal;
f_is_nan = {4{(f_is_qnan | f_is_snan)}};
unique case (operator_i)
ALU_EQ: cmp_result = is_equal;
ALU_NE: cmp_result = ~is_equal;
ALU_GTS, ALU_GTU: cmp_result = is_greater;
ALU_GES, ALU_GEU: cmp_result = is_greater | is_equal;
ALU_LTS, ALU_SLTS,
ALU_LTU, ALU_SLTU: cmp_result = ~(is_greater | is_equal);
ALU_SLETS,
ALU_SLETU,
ALU_LES, ALU_LEU: cmp_result = ~is_greater;
ALU_FEQ: cmp_result = is_equal & ~f_is_nan;
ALU_FLE: cmp_result = ~f_is_greater & ~f_is_nan;
ALU_FLT: cmp_result = ~(f_is_greater | is_equal) & ~f_is_nan;
default: ;
endcase
end
assign comparison_result_o = cmp_result[3];
// min/max/abs handling
logic [31:0] result_minmax;
logic [31:0] fp_canonical_nan;
logic [ 3:0] sel_minmax;
logic do_min;
logic minmax_is_fp_special;
logic [31:0] minmax_b;
assign minmax_b = (operator_i == ALU_ABS) ? adder_result : operand_b_i;
assign do_min = (operator_i == ALU_MIN) || (operator_i == ALU_MINU) ||
(operator_i == ALU_CLIP) || (operator_i == ALU_CLIPU) ||
(operator_i == ALU_FMIN);
assign sel_minmax[3:0] = ((operator_i == ALU_FMIN || operator_i == ALU_FMAX) ? f_is_greater : is_greater) ^ {4{do_min}};
assign result_minmax[31:24] = (sel_minmax[3] == 1'b1) ? operand_a_i[31:24] : minmax_b[31:24];
assign result_minmax[23:16] = (sel_minmax[2] == 1'b1) ? operand_a_i[23:16] : minmax_b[23:16];
assign result_minmax[15: 8] = (sel_minmax[1] == 1'b1) ? operand_a_i[15: 8] : minmax_b[15: 8];
assign result_minmax[ 7: 0] = (sel_minmax[0] == 1'b1) ? operand_a_i[ 7: 0] : minmax_b[ 7: 0];
//////////////////////////////////////////////////
// Float classification
//////////////////////////////////////////////////
logic [31:0] fclass_result;
if (FPU == 1) begin
logic [7:0] fclass_exponent;
logic [22:0] fclass_mantiassa;
logic fclass_ninf;
logic fclass_pinf;
logic fclass_normal;
logic fclass_subnormal;
logic fclass_nzero;
logic fclass_pzero;
logic fclass_is_negative;
logic fclass_snan_a;
logic fclass_qnan_a;
logic fclass_snan_b;
logic fclass_qnan_b;
assign fclass_exponent = operand_a_i[30:23];
assign fclass_mantiassa = operand_a_i[22:0];
assign fclass_is_negative = operand_a_i[31];
assign fclass_ninf = operand_a_i == 32'hFF800000;
assign fclass_pinf = operand_a_i == 32'h7F800000;
assign fclass_normal = fclass_exponent != 0 && fclass_exponent != 255;
assign fclass_subnormal = fclass_exponent == 0 && fclass_mantiassa != 0;
assign fclass_nzero = operand_a_i == 32'h80000000;
assign fclass_pzero = operand_a_i == 32'h00000000;
assign fclass_snan_a = operand_a_i[30:0] == 32'h7fa00000;
assign fclass_qnan_a = operand_a_i[30:0] == 32'h7fc00000;
assign fclass_snan_b = operand_b_i[30:0] == 32'h7fa00000;
assign fclass_qnan_b = operand_b_i[30:0] == 32'h7fc00000;
assign fclass_result[31:0] = {{22{1'b0}},
fclass_qnan_a,
fclass_snan_a,
fclass_pinf,
(fclass_normal && !fclass_is_negative),
(fclass_subnormal && !fclass_is_negative),
fclass_pzero,
fclass_nzero,
(fclass_subnormal && fclass_is_negative),
(fclass_normal && fclass_is_negative),
fclass_ninf};
// float special cases
assign f_is_qnan = fclass_qnan_a | fclass_qnan_b;
assign f_is_snan = fclass_snan_a | fclass_snan_b;
assign minmax_is_fp_special = (operator_i == ALU_FMIN || operator_i == ALU_FMAX) & (f_is_snan | f_is_qnan);
assign fp_canonical_nan = 32'h7fc00000;
end else begin // (FPU == 0)
assign minmax_is_fp_special = '0;
assign f_is_qnan = '0;
assign f_is_snan = '0;
assign fclass_result = '0;
assign fp_canonical_nan = '0;
end
//////////////////////////////////////////////////
// Float sign injection
//////////////////////////////////////////////////
logic [31:0] f_sign_inject_result;
always_comb
begin
if (FPU == 1) begin
f_sign_inject_result[30:0] = operand_a_i[30:0];
f_sign_inject_result[31] = operand_a_i[31];
unique case(operator_i)
ALU_FKEEP: f_sign_inject_result[31] = operand_a_i[31];
ALU_FSGNJ: f_sign_inject_result[31] = operand_b_i[31];
ALU_FSGNJN: f_sign_inject_result[31] = !operand_b_i[31];
ALU_FSGNJX: f_sign_inject_result[31] = operand_a_i[31] ^ operand_b_i[31];
default: ;
endcase
end
else
f_sign_inject_result = '0;
end
//////////////////////////////////////////////////
// Clip
//////////////////////////////////////////////////
logic [31:0] clip_result; // result of clip and clip
always_comb
begin
clip_result = result_minmax;
if(operator_i == ALU_CLIPU) begin
if(operand_a_i[31] || is_equal_clip) begin
clip_result = '0;
end else begin
clip_result = result_minmax;
end
end else begin
//CLIP
if(adder_result_expanded[36] || is_equal_clip) begin
clip_result = operand_b_neg;
end else begin
clip_result = result_minmax;
end
end
end
//////////////////////////////////////////////////
// ____ _ _ _ _ _____ _____ _ _____ //
// / ___|| | | | | | | ___| ___| | | ____| //
// \___ \| |_| | | | | |_ | |_ | | | _| //
// ___) | _ | |_| | _| | _| | |___| |___ //
// |____/|_| |_|\___/|_| |_| |_____|_____| //
// //
//////////////////////////////////////////////////
logic [ 3: 0][1:0] shuffle_byte_sel; // select byte in register: 31:24, 23:16, 15:8, 7:0
logic [ 3: 0] shuffle_reg_sel; // select register: rD/rS2 or rS1
logic [ 1: 0] shuffle_reg1_sel; // select register rD or rS2 for next stage
logic [ 1: 0] shuffle_reg0_sel;
logic [ 3: 0] shuffle_through;
logic [31: 0] shuffle_r1, shuffle_r0;
logic [31: 0] shuffle_r1_in, shuffle_r0_in;
logic [31: 0] shuffle_result;
logic [31: 0] pack_result;
always_comb
begin
shuffle_reg_sel = '0;
shuffle_reg1_sel = 2'b01;
shuffle_reg0_sel = 2'b10;
shuffle_through = '1;
unique case(operator_i)
ALU_EXT, ALU_EXTS: begin
if (operator_i == ALU_EXTS)
shuffle_reg1_sel = 2'b11;
if (vector_mode_i == VEC_MODE8) begin
shuffle_reg_sel[3:1] = 3'b111;
shuffle_reg_sel[0] = 1'b0;
end else begin
shuffle_reg_sel[3:2] = 2'b11;
shuffle_reg_sel[1:0] = 2'b00;
end
end
ALU_PCKLO: begin
shuffle_reg1_sel = 2'b00;
if (vector_mode_i == VEC_MODE8) begin
shuffle_through = 4'b0011;
shuffle_reg_sel = 4'b0001;
end else begin
shuffle_reg_sel = 4'b0011;
end
end
ALU_PCKHI: begin
shuffle_reg1_sel = 2'b00;
if (vector_mode_i == VEC_MODE8) begin
shuffle_through = 4'b1100;
shuffle_reg_sel = 4'b0100;
end else begin
shuffle_reg_sel = 4'b0011;
end
end
ALU_SHUF2: begin
unique case (vector_mode_i)
VEC_MODE8: begin
shuffle_reg_sel[3] = ~operand_b_i[26];
shuffle_reg_sel[2] = ~operand_b_i[18];
shuffle_reg_sel[1] = ~operand_b_i[10];
shuffle_reg_sel[0] = ~operand_b_i[ 2];
end
VEC_MODE16: begin
shuffle_reg_sel[3] = ~operand_b_i[17];
shuffle_reg_sel[2] = ~operand_b_i[17];
shuffle_reg_sel[1] = ~operand_b_i[ 1];
shuffle_reg_sel[0] = ~operand_b_i[ 1];
end
default:;
endcase
end
ALU_INS: begin
unique case (vector_mode_i)
VEC_MODE8: begin
shuffle_reg0_sel = 2'b00;
unique case (imm_vec_ext_i)
2'b00: begin
shuffle_reg_sel[3:0] = 4'b1110;
end
2'b01: begin
shuffle_reg_sel[3:0] = 4'b1101;
end
2'b10: begin
shuffle_reg_sel[3:0] = 4'b1011;
end
2'b11: begin
shuffle_reg_sel[3:0] = 4'b0111;
end
default:;
endcase
end
VEC_MODE16: begin
shuffle_reg0_sel = 2'b01;
shuffle_reg_sel[3] = ~imm_vec_ext_i[ 0];
shuffle_reg_sel[2] = ~imm_vec_ext_i[ 0];
shuffle_reg_sel[1] = imm_vec_ext_i[ 0];
shuffle_reg_sel[0] = imm_vec_ext_i[ 0];
end
default:;
endcase
end
default:;
endcase
end
always_comb
begin
shuffle_byte_sel = '0;
// byte selector
unique case (operator_i)
ALU_EXTS,
ALU_EXT: begin
unique case (vector_mode_i)
VEC_MODE8: begin
shuffle_byte_sel[3] = imm_vec_ext_i[1:0];
shuffle_byte_sel[2] = imm_vec_ext_i[1:0];
shuffle_byte_sel[1] = imm_vec_ext_i[1:0];
shuffle_byte_sel[0] = imm_vec_ext_i[1:0];
end
VEC_MODE16: begin
shuffle_byte_sel[3] = {imm_vec_ext_i[0], 1'b1};
shuffle_byte_sel[2] = {imm_vec_ext_i[0], 1'b1};
shuffle_byte_sel[1] = {imm_vec_ext_i[0], 1'b1};
shuffle_byte_sel[0] = {imm_vec_ext_i[0], 1'b0};
end
default:;
endcase
end
ALU_PCKLO: begin
unique case (vector_mode_i)
VEC_MODE8: begin
shuffle_byte_sel[3] = 2'b00;
shuffle_byte_sel[2] = 2'b00;
shuffle_byte_sel[1] = 2'b00;
shuffle_byte_sel[0] = 2'b00;
end
VEC_MODE16: begin
shuffle_byte_sel[3] = 2'b01;
shuffle_byte_sel[2] = 2'b00;
shuffle_byte_sel[1] = 2'b01;
shuffle_byte_sel[0] = 2'b00;
end
default:;
endcase
end
ALU_PCKHI: begin
unique case (vector_mode_i)
VEC_MODE8: begin
shuffle_byte_sel[3] = 2'b00;
shuffle_byte_sel[2] = 2'b00;
shuffle_byte_sel[1] = 2'b00;
shuffle_byte_sel[0] = 2'b00;
end
VEC_MODE16: begin
shuffle_byte_sel[3] = 2'b11;
shuffle_byte_sel[2] = 2'b10;
shuffle_byte_sel[1] = 2'b11;
shuffle_byte_sel[0] = 2'b10;
end
default:;
endcase
end
ALU_SHUF2,
ALU_SHUF: begin
unique case (vector_mode_i)
VEC_MODE8: begin
shuffle_byte_sel[3] = operand_b_i[25:24];
shuffle_byte_sel[2] = operand_b_i[17:16];
shuffle_byte_sel[1] = operand_b_i[ 9: 8];
shuffle_byte_sel[0] = operand_b_i[ 1: 0];
end
VEC_MODE16: begin
shuffle_byte_sel[3] = {operand_b_i[16], 1'b1};
shuffle_byte_sel[2] = {operand_b_i[16], 1'b0};
shuffle_byte_sel[1] = {operand_b_i[ 0], 1'b1};
shuffle_byte_sel[0] = {operand_b_i[ 0], 1'b0};
end
default:;
endcase
end
ALU_INS: begin
shuffle_byte_sel[3] = 2'b11;
shuffle_byte_sel[2] = 2'b10;
shuffle_byte_sel[1] = 2'b01;
shuffle_byte_sel[0] = 2'b00;
end
default:;
endcase
end
assign shuffle_r0_in = shuffle_reg0_sel[1] ?
operand_a_i :
(shuffle_reg0_sel[0] ? {2{operand_a_i[15:0]}} : {4{operand_a_i[7:0]}});
assign shuffle_r1_in = shuffle_reg1_sel[1] ?
{{8{operand_a_i[31]}}, {8{operand_a_i[23]}}, {8{operand_a_i[15]}}, {8{operand_a_i[7]}}} :
(shuffle_reg1_sel[0] ? operand_c_i : operand_b_i);
assign shuffle_r0[31:24] = shuffle_byte_sel[3][1] ?
(shuffle_byte_sel[3][0] ? shuffle_r0_in[31:24] : shuffle_r0_in[23:16]) :
(shuffle_byte_sel[3][0] ? shuffle_r0_in[15: 8] : shuffle_r0_in[ 7: 0]);
assign shuffle_r0[23:16] = shuffle_byte_sel[2][1] ?
(shuffle_byte_sel[2][0] ? shuffle_r0_in[31:24] : shuffle_r0_in[23:16]) :
(shuffle_byte_sel[2][0] ? shuffle_r0_in[15: 8] : shuffle_r0_in[ 7: 0]);
assign shuffle_r0[15: 8] = shuffle_byte_sel[1][1] ?
(shuffle_byte_sel[1][0] ? shuffle_r0_in[31:24] : shuffle_r0_in[23:16]) :
(shuffle_byte_sel[1][0] ? shuffle_r0_in[15: 8] : shuffle_r0_in[ 7: 0]);
assign shuffle_r0[ 7: 0] = shuffle_byte_sel[0][1] ?
(shuffle_byte_sel[0][0] ? shuffle_r0_in[31:24] : shuffle_r0_in[23:16]) :
(shuffle_byte_sel[0][0] ? shuffle_r0_in[15: 8] : shuffle_r0_in[ 7: 0]);
assign shuffle_r1[31:24] = shuffle_byte_sel[3][1] ?
(shuffle_byte_sel[3][0] ? shuffle_r1_in[31:24] : shuffle_r1_in[23:16]) :
(shuffle_byte_sel[3][0] ? shuffle_r1_in[15: 8] : shuffle_r1_in[ 7: 0]);
assign shuffle_r1[23:16] = shuffle_byte_sel[2][1] ?
(shuffle_byte_sel[2][0] ? shuffle_r1_in[31:24] : shuffle_r1_in[23:16]) :
(shuffle_byte_sel[2][0] ? shuffle_r1_in[15: 8] : shuffle_r1_in[ 7: 0]);
assign shuffle_r1[15: 8] = shuffle_byte_sel[1][1] ?
(shuffle_byte_sel[1][0] ? shuffle_r1_in[31:24] : shuffle_r1_in[23:16]) :
(shuffle_byte_sel[1][0] ? shuffle_r1_in[15: 8] : shuffle_r1_in[ 7: 0]);
assign shuffle_r1[ 7: 0] = shuffle_byte_sel[0][1] ?
(shuffle_byte_sel[0][0] ? shuffle_r1_in[31:24] : shuffle_r1_in[23:16]) :
(shuffle_byte_sel[0][0] ? shuffle_r1_in[15: 8] : shuffle_r1_in[ 7: 0]);
assign shuffle_result[31:24] = shuffle_reg_sel[3] ? shuffle_r1[31:24] : shuffle_r0[31:24];
assign shuffle_result[23:16] = shuffle_reg_sel[2] ? shuffle_r1[23:16] : shuffle_r0[23:16];
assign shuffle_result[15: 8] = shuffle_reg_sel[1] ? shuffle_r1[15: 8] : shuffle_r0[15: 8];
assign shuffle_result[ 7: 0] = shuffle_reg_sel[0] ? shuffle_r1[ 7: 0] : shuffle_r0[ 7: 0];
assign pack_result[31:24] = shuffle_through[3] ? shuffle_result[31:24] : operand_c_i[31:24];
assign pack_result[23:16] = shuffle_through[2] ? shuffle_result[23:16] : operand_c_i[23:16];
assign pack_result[15: 8] = shuffle_through[1] ? shuffle_result[15: 8] : operand_c_i[15: 8];
assign pack_result[ 7: 0] = shuffle_through[0] ? shuffle_result[ 7: 0] : operand_c_i[ 7: 0];
/////////////////////////////////////////////////////////////////////
// ____ _ _ ____ _ ___ //
// | __ )(_) |_ / ___|___ _ _ _ __ | |_ / _ \ _ __ ___ //
// | _ \| | __| | | / _ \| | | | '_ \| __| | | | | '_ \/ __| //
// | |_) | | |_ | |__| (_) | |_| | | | | |_ | |_| | |_) \__ \_ //
// |____/|_|\__| \____\___/ \__,_|_| |_|\__| \___/| .__/|___(_) //
// |_| //
/////////////////////////////////////////////////////////////////////
logic [31:0] ff_input; // either op_a_i or its bit reversed version
logic [5:0] cnt_result; // population count
logic [5:0] clb_result; // count leading bits
logic [4:0] ff1_result; // holds the index of the first '1'
logic ff_no_one; // if no ones are found
logic [4:0] fl1_result; // holds the index of the last '1'
logic [5:0] bitop_result; // result of all bitop operations muxed together
alu_popcnt alu_popcnt_i
(
.in_i ( operand_a_i ),
.result_o ( cnt_result )
);
always_comb
begin
ff_input = '0;
case (operator_i)
ALU_FF1: ff_input = operand_a_i;
ALU_DIVU,
ALU_REMU,
ALU_FL1: ff_input = operand_a_rev;
ALU_DIV,
ALU_REM,
ALU_CLB: begin
if (operand_a_i[31])
ff_input = operand_a_neg_rev;
else
ff_input = operand_a_rev;
end
endcase
end
alu_ff alu_ff_i
(
.in_i ( ff_input ),
.first_one_o ( ff1_result ),
.no_ones_o ( ff_no_one )
);
// special case if ff1_res is 0 (no 1 found), then we keep the 0
// this is done in the result mux
assign fl1_result = 5'd31 - ff1_result;
assign clb_result = ff1_result - 5'd1;
always_comb
begin
bitop_result = '0;
case (operator_i)
ALU_FF1: bitop_result = ff_no_one ? 6'd32 : {1'b0, ff1_result};
ALU_FL1: bitop_result = ff_no_one ? 6'd32 : {1'b0, fl1_result};
ALU_CNT: bitop_result = cnt_result;
ALU_CLB: begin
if (ff_no_one) begin
if (operand_a_i[31])
bitop_result = 6'd31;
else
bitop_result = '0;
end else begin
bitop_result = clb_result;
end
end
default:;
endcase
end
////////////////////////////////////////////////
// ____ _ _ __ __ _ //
// | __ )(_) |_ | \/ | __ _ _ __ (_)_ __ //
// | _ \| | __| | |\/| |/ _` | '_ \| | '_ \ //
// | |_) | | |_ | | | | (_| | | | | | |_) | //
// |____/|_|\__| |_| |_|\__,_|_| |_|_| .__/ //
// |_| //
////////////////////////////////////////////////
logic extract_is_signed;
logic extract_sign;
logic [31:0] bmask_first, bmask_inv;
logic [31:0] bextins_and;
logic [31:0] bextins_result, bclr_result, bset_result;
// construct bit mask for insert/extract/bclr/bset
// bmask looks like this 00..0011..1100..00
assign bmask_first = {32'hFFFFFFFE} << bmask_a_i;
assign bmask = (~bmask_first) << bmask_b_i;
assign bmask_inv = ~bmask;
assign bextins_and = (operator_i == ALU_BINS) ? operand_c_i : {32{extract_sign}};
assign extract_is_signed = (operator_i == ALU_BEXT);
assign extract_sign = extract_is_signed & shift_result[bmask_a_i];
assign bextins_result = (bmask & shift_result) | (bextins_and & bmask_inv);
assign bclr_result = operand_a_i & bmask_inv;
assign bset_result = operand_a_i | bmask;
/////////////////////////////////////////////////////////////////////////////////
// ____ _____ _______ _____ ________ ________ _____ _____ ______ //
// | _ \_ _|__ __| | __ \| ____\ \ / / ____| __ \ / ____| ____| //
// | |_) || | | |______| |__) | |__ \ \ / /| |__ | |__) | (___ | |__ //
// | _ < | | | |______| _ /| __| \ \/ / | __| | _ / \___ \| __| //
// | |_) || |_ | | | | \ \| |____ \ / | |____| | \ \ ____) | |____ //
// |____/_____| |_| |_| \_\______| \/ |______|_| \_\_____/|______| //
// //
/////////////////////////////////////////////////////////////////////////////////
logic [31:0] radix_2_rev;
logic [31:0] radix_4_rev;
logic [31:0] radix_8_rev;
logic [31:0] reverse_result;
logic [1:0] radix_mux_sel;
assign radix_mux_sel = bmask_a_i[1:0];
generate
// radix-2 bit reverse
for(j = 0; j < 32; j++)
begin
assign radix_2_rev[j] = shift_result[31-j];
end
// radix-4 bit reverse
for(j = 0; j < 16; j++)
begin
assign radix_4_rev[2*j+1:2*j] = shift_result[31-j*2:31-j*2-1];
end
// radix-8 bit reverse
for(j = 0; j < 10; j++)
begin
assign radix_8_rev[3*j+2:3*j] = shift_result[31-j*3:31-j*3-2];
end
assign radix_8_rev[31:30] = 2'b0;
endgenerate
always_comb
begin
reverse_result = '0;
unique case (radix_mux_sel)
2'b00: reverse_result = radix_2_rev;
2'b01: reverse_result = radix_4_rev;
2'b10: reverse_result = radix_8_rev;
default: reverse_result = radix_2_rev;