-
Notifications
You must be signed in to change notification settings - Fork 1
/
riscv_mult.sv
365 lines (300 loc) · 14 KB
/
riscv_mult.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
// Copyright 2018 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
////////////////////////////////////////////////////////////////////////////////
// Engineer: Matthias Baer - [email protected] //
// //
// Additional contributions by: //
// Andreas Traber - [email protected] //
// Michael Gautschi - [email protected] //
// //
// Design Name: Subword multiplier and MAC //
// Project Name: RI5CY //
// Language: SystemVerilog //
// //
// Description: Advanced MAC unit for PULP. //
// added parameter SHARED_DSP_MULT to offload dot-product //
// instructions to the shared unit //
// //
////////////////////////////////////////////////////////////////////////////////
import riscv_defines::*;
module riscv_mult
#(
parameter SHARED_DSP_MULT = 1
)
(
input logic clk,
input logic rst_n,
input logic enable_i,
input logic [ 2:0] operator_i,
// integer and short multiplier
input logic short_subword_i,
input logic [ 1:0] short_signed_i,
input logic [31:0] op_a_i,
input logic [31:0] op_b_i,
input logic [31:0] op_c_i,
input logic [ 4:0] imm_i,
// dot multiplier
input logic [ 1:0] dot_signed_i,
input logic [31:0] dot_op_a_i,
input logic [31:0] dot_op_b_i,
input logic [31:0] dot_op_c_i,
input logic is_clpx_i,
input logic [ 1:0] clpx_shift_i,
input logic clpx_img_i,
output logic [31:0] result_o,
output logic multicycle_o,
output logic ready_o,
input logic ex_ready_i
);
///////////////////////////////////////////////////////////////
// ___ _ _ _____ ___ ___ ___ ___ __ __ _ _ _ _____ //
// |_ _| \| |_ _| __/ __| __| _ \ | \/ | | | | ||_ _| //
// | || . | | | | _| (_ | _|| / | |\/| | |_| | |__| | //
// |___|_|\_| |_| |___\___|___|_|_\ |_| |_|\___/|____|_| //
// //
///////////////////////////////////////////////////////////////
logic [16:0] short_op_a;
logic [16:0] short_op_b;
logic [32:0] short_op_c;
logic [33:0] short_mul;
logic [33:0] short_mac;
logic [31:0] short_round, short_round_tmp;
logic [33:0] short_result;
logic short_mac_msb1;
logic short_mac_msb0;
logic [ 4:0] short_imm;
logic [ 1:0] short_subword;
logic [ 1:0] short_signed;
logic short_shift_arith;
logic [ 4:0] mulh_imm;
logic [ 1:0] mulh_subword;
logic [ 1:0] mulh_signed;
logic mulh_shift_arith;
logic mulh_carry_q;
logic mulh_active;
logic mulh_save;
logic mulh_clearcarry;
logic mulh_ready;
enum logic [2:0] {IDLE, STEP0, STEP1, STEP2, FINISH} mulh_CS, mulh_NS;
// prepare the rounding value
assign short_round_tmp = (32'h00000001) << imm_i;
assign short_round = (operator_i == MUL_IR) ? {1'b0, short_round_tmp[31:1]} : '0;
// perform subword selection and sign extensions
assign short_op_a[15:0] = short_subword[0] ? op_a_i[31:16] : op_a_i[15:0];
assign short_op_b[15:0] = short_subword[1] ? op_b_i[31:16] : op_b_i[15:0];
assign short_op_a[16] = short_signed[0] & short_op_a[15];
assign short_op_b[16] = short_signed[1] & short_op_b[15];
assign short_op_c = mulh_active ? $signed({mulh_carry_q, op_c_i}) : $signed(op_c_i);
assign short_mul = $signed(short_op_a) * $signed(short_op_b);
assign short_mac = $signed(short_op_c) + $signed(short_mul) + $signed(short_round);
//we use only short_signed_i[0] as it cannot be short_signed_i[1] 1 and short_signed_i[0] 0
assign short_result = $signed({short_shift_arith & short_mac_msb1, short_shift_arith & short_mac_msb0, short_mac[31:0]}) >>> short_imm;
// choose between normal short multiplication operation and mulh operation
assign short_imm = mulh_active ? mulh_imm : imm_i;
assign short_subword = mulh_active ? mulh_subword : {2{short_subword_i}};
assign short_signed = mulh_active ? mulh_signed : short_signed_i;
assign short_shift_arith = mulh_active ? mulh_shift_arith : short_signed_i[0];
assign short_mac_msb1 = mulh_active ? short_mac[33] : short_mac[31];
assign short_mac_msb0 = mulh_active ? short_mac[32] : short_mac[31];
always_comb
begin
mulh_NS = mulh_CS;
mulh_imm = 5'd0;
mulh_subword = 2'b00;
mulh_signed = 2'b00;
mulh_shift_arith = 1'b0;
mulh_ready = 1'b0;
mulh_active = 1'b1;
mulh_save = 1'b0;
mulh_clearcarry = 1'b0;
multicycle_o = 1'b0;
case (mulh_CS)
IDLE: begin
mulh_active = 1'b0;
mulh_ready = 1'b1;
mulh_save = 1'b0;
if ((operator_i == MUL_H) && enable_i) begin
mulh_ready = 1'b0;
mulh_NS = STEP0;
end
end
STEP0: begin
multicycle_o = 1'b1;
mulh_imm = 5'd16;
mulh_active = 1'b1;
//AL*BL never overflows
mulh_save = 1'b0;
mulh_NS = STEP1;
//Here always a 32'b unsigned result (no carry)
end
STEP1: begin
multicycle_o = 1'b1;
//AL*BH is signed iff B is signed
mulh_signed = {short_signed_i[1], 1'b0};
mulh_subword = 2'b10;
mulh_save = 1'b1;
mulh_shift_arith = 1'b1;
mulh_NS = STEP2;
//Here signed 32'b + unsigned 32'b result.
//Result is a signed 33'b
//Store the carry as it will be used as sign extension, we do
//not shift
end
STEP2: begin
multicycle_o = 1'b1;
//AH*BL is signed iff A is signed
mulh_signed = {1'b0, short_signed_i[0]};
mulh_subword = 2'b01;
mulh_imm = 5'd16;
mulh_save = 1'b1;
mulh_clearcarry = 1'b1;
mulh_shift_arith = 1'b1;
mulh_NS = FINISH;
//Here signed 32'b + signed 33'b result.
//Result is a signed 34'b
//We do not store the carries as the bits 34:33 are shifted back, so we clear it
end
FINISH: begin
mulh_signed = short_signed_i;
mulh_subword = 2'b11;
mulh_ready = 1'b1;
if (ex_ready_i)
mulh_NS = IDLE;
end
endcase
end
always_ff @(posedge clk, negedge rst_n)
begin
if (~rst_n)
begin
mulh_CS <= IDLE;
mulh_carry_q <= 1'b0;
end else begin
mulh_CS <= mulh_NS;
if (mulh_save)
mulh_carry_q <= ~mulh_clearcarry & short_mac[32];
else if (ex_ready_i) // clear carry when we are going to the next instruction
mulh_carry_q <= 1'b0;
end
end
// 32x32 = 32-bit multiplier
logic [31:0] int_op_a_msu;
logic [31:0] int_op_b_msu;
logic [31:0] int_result;
logic int_is_msu;
assign int_is_msu = (operator_i == MUL_MSU32); // TODO: think about using a separate signal here, could prevent some switching
assign int_op_a_msu = op_a_i ^ {32{int_is_msu}};
assign int_op_b_msu = op_b_i & {32{int_is_msu}};
assign int_result = $signed(op_c_i) + $signed(int_op_b_msu) + $signed(int_op_a_msu) * $signed(op_b_i);
///////////////////////////////////////////////
// ___ ___ _____ __ __ _ _ _ _____ //
// | \ / _ \_ _| | \/ | | | | ||_ _| //
// | |) | (_) || | | |\/| | |_| | |__| | //
// |___/ \___/ |_| |_| |_|\___/|____|_| //
// //
///////////////////////////////////////////////
logic [31:0] dot_char_result;
logic [32:0] dot_short_result;
logic [31:0] accumulator;
logic [15:0] clpx_shift_result;
generate
if (SHARED_DSP_MULT == 0) begin
logic [3:0][ 8:0] dot_char_op_a;
logic [3:0][ 8:0] dot_char_op_b;
logic [3:0][17:0] dot_char_mul;
logic [1:0][16:0] dot_short_op_a;
logic [1:0][16:0] dot_short_op_b;
logic [1:0][33:0] dot_short_mul;
logic [16:0] dot_short_op_a_1_neg; //to compute -rA[31:16]*rB[31:16] -> (!rA[31:16] + 1)*rB[31:16] = !rA[31:16]*rB[31:16] + rB[31:16]
logic [31:0] dot_short_op_b_ext;
assign dot_char_op_a[0] = {dot_signed_i[1] & dot_op_a_i[ 7], dot_op_a_i[ 7: 0]};
assign dot_char_op_a[1] = {dot_signed_i[1] & dot_op_a_i[15], dot_op_a_i[15: 8]};
assign dot_char_op_a[2] = {dot_signed_i[1] & dot_op_a_i[23], dot_op_a_i[23:16]};
assign dot_char_op_a[3] = {dot_signed_i[1] & dot_op_a_i[31], dot_op_a_i[31:24]};
assign dot_char_op_b[0] = {dot_signed_i[0] & dot_op_b_i[ 7], dot_op_b_i[ 7: 0]};
assign dot_char_op_b[1] = {dot_signed_i[0] & dot_op_b_i[15], dot_op_b_i[15: 8]};
assign dot_char_op_b[2] = {dot_signed_i[0] & dot_op_b_i[23], dot_op_b_i[23:16]};
assign dot_char_op_b[3] = {dot_signed_i[0] & dot_op_b_i[31], dot_op_b_i[31:24]};
assign dot_char_mul[0] = $signed(dot_char_op_a[0]) * $signed(dot_char_op_b[0]);
assign dot_char_mul[1] = $signed(dot_char_op_a[1]) * $signed(dot_char_op_b[1]);
assign dot_char_mul[2] = $signed(dot_char_op_a[2]) * $signed(dot_char_op_b[2]);
assign dot_char_mul[3] = $signed(dot_char_op_a[3]) * $signed(dot_char_op_b[3]);
assign dot_char_result = $signed(dot_char_mul[0]) + $signed(dot_char_mul[1]) +
$signed(dot_char_mul[2]) + $signed(dot_char_mul[3]) +
$signed(dot_op_c_i);
assign dot_short_op_a[0] = {dot_signed_i[1] & dot_op_a_i[15], dot_op_a_i[15: 0]};
assign dot_short_op_a[1] = {dot_signed_i[1] & dot_op_a_i[31], dot_op_a_i[31:16]};
assign dot_short_op_a_1_neg = dot_short_op_a[1] ^ {17{(is_clpx_i & ~clpx_img_i)}}; //negates whether clpx_img_i is 0 or 1, only REAL PART needs to be negated
assign dot_short_op_b[0] = (is_clpx_i & clpx_img_i) ? {dot_signed_i[0] & dot_op_b_i[31], dot_op_b_i[31:16]} : {dot_signed_i[0] & dot_op_b_i[15], dot_op_b_i[15: 0]};
assign dot_short_op_b[1] = (is_clpx_i & clpx_img_i) ? {dot_signed_i[0] & dot_op_b_i[15], dot_op_b_i[15: 0]} : {dot_signed_i[0] & dot_op_b_i[31], dot_op_b_i[31:16]};
assign dot_short_mul[0] = $signed(dot_short_op_a[0]) * $signed(dot_short_op_b[0]);
assign dot_short_mul[1] = $signed(dot_short_op_a_1_neg) * $signed(dot_short_op_b[1]);
assign dot_short_op_b_ext = $signed(dot_short_op_b[1]);
assign accumulator = is_clpx_i ? dot_short_op_b_ext & {32{~clpx_img_i}} : $signed(dot_op_c_i);
assign dot_short_result = $signed(dot_short_mul[0][31:0]) + $signed(dot_short_mul[1][31:0]) + $signed(accumulator);
assign clpx_shift_result = $signed(dot_short_result[31:15])>>>clpx_shift_i;
end else begin
assign dot_char_result = '0;
assign dot_short_result = '0;
end
endgenerate
////////////////////////////////////////////////////////
// ____ _ _ __ __ //
// | _ \ ___ ___ _ _| | |_ | \/ |_ ___ __ //
// | |_) / _ \/ __| | | | | __| | |\/| | | | \ \/ / //
// | _ < __/\__ \ |_| | | |_ | | | | |_| |> < //
// |_| \_\___||___/\__,_|_|\__| |_| |_|\__,_/_/\_\ //
// //
////////////////////////////////////////////////////////
always_comb
begin
result_o = '0;
unique case (operator_i)
MUL_MAC32, MUL_MSU32: result_o = int_result[31:0];
MUL_I, MUL_IR, MUL_H: result_o = short_result[31:0];
MUL_DOT8: result_o = dot_char_result[31:0];
MUL_DOT16: begin
if(is_clpx_i) begin
if(clpx_img_i) begin
result_o[31:16] = clpx_shift_result;
result_o[15:0] = dot_op_c_i[15:0];
end else begin
result_o[15:0] = clpx_shift_result;
result_o[31:16] = dot_op_c_i[31:16];
end
end else begin
result_o = dot_short_result[31:0];
end
end
default: ; // default case to suppress unique warning
endcase
end
assign ready_o = mulh_ready;
//----------------------------------------------------------------------------
// Assertions
//----------------------------------------------------------------------------
// check multiplication result for mulh
`ifndef VERILATOR
assert property (
@(posedge clk) ((mulh_CS == FINISH) && (operator_i == MUL_H) && (short_signed_i == 2'b11))
|->
(result_o == (($signed({{32{op_a_i[31]}}, op_a_i}) * $signed({{32{op_b_i[31]}}, op_b_i})) >>> 32) ) );
// check multiplication result for mulhsu
assert property (
@(posedge clk) ((mulh_CS == FINISH) && (operator_i == MUL_H) && (short_signed_i == 2'b01))
|->
(result_o == (($signed({{32{op_a_i[31]}}, op_a_i}) * {32'b0, op_b_i}) >> 32) ) );
// check multiplication result for mulhu
assert property (
@(posedge clk) ((mulh_CS == FINISH) && (operator_i == MUL_H) && (short_signed_i == 2'b00))
|->
(result_o == (({32'b0, op_a_i} * {32'b0, op_b_i}) >> 32) ) );
`endif
endmodule