Skip to content

alexmilowski/pypropgraph

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pypropgraph

A Property Graph library for python that supports reading and writing property graphs in a textual format, reading an writing via Cypher, and a simple schema language.

Things you can do

  • generate documentation for your property graph structure
  • load, parse, and manipulate PG Schema documents
  • load saved graphs from a YAML format, schema embedded
  • generate cypher from saved graphs to load property graphs

Install

You can install the package via:

pip install pypropgraph

Using the command-line interface

The module can be invoked directly and provides a set of basic commands that allow parsing, inspection, cypher statement generation, and loading ontologies.

The invocation is:

python -m propgraph {operation} {file ...}?

where operation is one of:

  • validate - parse and validate the graph
  • cypher - generate cypher create/merge statements
  • load - load the ontology into a property graph database
  • schema.check - check the syntax of a schema
  • schema.doc - generate Markdown documentation for the schema

If the file is omitted, the command will read from stdin. Otherwise, each file specified will be read and operated on in the order they are specified.

Loading property graphs

The module currently supports loading ontologies directly into RedisGraph.

The following options can be specified for connecting to the database:

  • --host {name}|{ip} - the host of the database, defaults to 0.0.0.0
  • --port {port} - the port, defaults to 6379
  • --password {password} - the database password, default is no password
  • --graph {key} - the graph key, defaults to "test"
  • --infer - infer identity and labels from @id and @type, respectively

Adding the --show-query option will allow you to see the Cypher statements as they are executed.

Property graph YAML format

The YAML-based format is a simple dictionary of nodes and edges.

Graphs

At the top-level, a graph is a dictionary whose keys define the nodes, schema, and edges. The keys can either be:

  • ~schema - the schema definition for the property graph
  • ~edges - a set of fully qualified edges
  • {label} - a node label
A:
 ~label: Component
 id: 'A'
 name: 'Component A'
 use: 12
 ~edges:
 - ~to: B
   ~label: imports
 - ~to: C
   ~label: imports
B:
 ~label: Component
 id: 'B'
 name: 'Component B'
 use: 6
C:
 ~label: Component
 id: 'C'
 name: 'Component C'
 use: 7
~edges:
  e1:
    ~from: C
    ~to: B
    ~label: imports

When a schema is specified via ~schema, the properties that establish the node's identity can be specified.

Alternatively, we can use inferencing and the edge label format:

A:
 @type: Component
 @id: 'A'
 name: 'Component A'
 use: 12
 :imports:
 - ~to: B
 - ~to: C
B:
 @type: Component
 @id: 'B'
 name: 'Component B'
 use: 6
C:
 @type: Component
 @id: 'C'
 name: 'Component C'
 use: 7
:imports:
 - ~from: C
   ~to: B

Nodes

A node is a simple dictionary whose key/value pairs define properties all except for two special labels:

  • ~labels - the set of Node labels
  • ~edges - the edges connected to the node
  • {label} - a property

A property can either be a simple key/value pair where the key will be the property name. It can also be defined with the name: and value: keys for property name values that are harder to encode as a key:

Funky:
  name: 'Town'
  p1:
     name: "Meaning of life"
     value: 42

Node can specify an edge via a label and enumerate the target nodes and edge properties:

A:
  id: 'A'
  :child:
    - ~to: B
      use: 1209
    - ~to: C
      use: 432
B:
  id: 'B'
  :child:
     e1:
        ~to: C
        use: 128
C:
  id: 'C'

Nodes can also specify a set of edges that originate at the node via the ~edges key. The edges are specified as a list or key labeled set:

A:
  id: 'A'
  ~edges:
    - ~to: B
      ~label: child
      use: 1209
    - ~to: C
      ~label: child
      use: 432
B:
  id: 'B'
  ~edges:
     e1:
        ~to: C
        ~label: child
        use: 128
C:
  id: 'C'

Edges

Edges can also be specified at the graph level instead of in the node. At the top-level, a single ~edges key is allowed that can specify edges from and to nodes. The ~from key must also be specified:

A:
  id: 'A'
B:
  id: 'B'
C:
  id: 'C'
~edges:
  - ~from: A
    ~to: B
    ~label: child
    use: 1209
  - ~from: A
    ~to: C
    ~label: child
    use: 432
  - ~from: B
    ~to: C
    ~label: child
    use: 128

Alternatively, you can specify a label for the edge and enumerate the edges associated with that label:

A:
  id: 'A'
B:
  id: 'B'
C:
  id: 'C'
:child:
  - ~from: A
    ~to: B
    use: 1209
  - ~from: A
    ~to: C
    use: 432
  - ~from: B
    ~to: C
    use: 128

Label and Identity Inference

Reusing the '@type' and '@id' properties from JSON-LD, if these properties are specified on a node, then the following inferences can be optionally applied:

  • The value of @type will turn into a node label
  • The value of @id will be used as the key for matching the node

Otherwise, labels and identity must be accomplished via the schema.

Schemas

A schema can be specified at the top-level via the ~schema key. The schema itself is either embedded directly as text or has a single source key specifying the file location.

For example, in the imports graph example, the id property can be specified as property that identifies the node. This can be helpful for generating merge or match queries.

The schema format is described separately and allows you to define nodes, labels, properties, and their descriptions.

The schema can be embedded as text:

~schema: |
  (:Component {id})
  .id = 'the component identifier'
  .name = 'the component descriptive name'
  .use = int 'a count of usage'
  -[:imports]->(:Component) = 'an imported component'
A:
 ~label: Component
 id: 'A'
 name: 'Component A'
 use: 12
 ~edges:
 - ~to: B
   ~label: imports
 - ~to: C
   ~label: imports
B:
 ~label: Component
 id: 'B'
 name: 'Component B'
 use: 6
C:
 ~label: Component
 id: 'C'
 name: 'Component C'
 use: 7
~edges:
  - ~from: C
    ~to: B
    ~label: imports

or via reference:

~schema:
  source: schema.pgs
A:
 ~label: Component
 id: 'A'
 name: 'Component A'
 use: 12
 ~edges:
 - ~to: B
   ~label: imports
 - ~to: C
   ~label: imports
B:
 ~label: Component
 id: 'B'
 name: 'Component B'
 use: 6
C:
 ~label: Component
 id: 'C'
 name: 'Component C'
 use: 7
~edges:
  - ~from: C
    ~to: B
    ~label: imports

API

Loading Graphs

The graph source is just raw YAML and should be loaded directly using the yaml package:

import yaml

with open('graph.yaml','r') as input:
   graph_data = yaml.load(input,Loader=yaml.Loader)

Once you have loaded the graph YAML, you can read the graph into a sequence of item (NodeItem or EdgeRelationItem):

import yaml
from propgraph import read_graph

with open('graph.yaml','r') as input:
   graph_data = yaml.load(input,Loader=yaml.Loader)
   for item in read_graph(graph_data):
      print(item)

These items can be turned into cypher merge or create statements:

import yaml
from propgraph import read_graph, graph_to_cypher

with open('graph.yaml','r') as input:
   graph_data = yaml.load(input,Loader=yaml.Loader)
   for query in graph_to_cypher(read_graph(graph_data)):
      print(query,end=';\n')

Finally, the graph can easily be loaded into RedisGraph:

import yaml
from propgraph import read_graph, graph_to_cypher

import redis
from redisgraph import Graph
r = redis.Redis(host='localhost',port=6379,password='...')
rg = Graph('test',r)

with open('graph.yaml','r') as input:
   graph_data = yaml.load(input,Loader=yaml.Loader)
   for query in graph_to_cypher(read_graph(graph_data)):
      rg.query(query)

Loading Schemas

A schema can be loaded from a file:

from propgraph import SchemaParser

parser = SchemaParser()
with open('schema.pgs','r') as input:
   schema = parser.parse(input)

or a string:

from propgraph import SchemaParser

source = '''
(:Component {id})
.id = 'the component identifier'
.name = 'the component descriptive name'
.use = int 'a count of usage'
-[:imports]->(:Component) = 'an imported component'
'''

parser = SchemaParser()
schema = parser.parse(input)

Generating schema documentation

Documentation in Markdown format can be generate from the schema object:

import sys
from propgraph import SchemaParser

source = '''
(:Component {id})
.id = 'the component identifier'
.name = 'the component descriptive name'
.use = int 'a count of usage'
-[:imports]->(:Component) = 'an imported component'
'''

parser = SchemaParser()
schema = parser.parse(input)

schema.documentation(sys.stdout)

API

Note: incomplete ...

read_graph(source,location=None,schema=None)

Reads a graph into a sequence of items

graph_to_cypher(stream,merge=True)

Transforms a sequence of items into a sequence of cypher statements

cypher_for_node(item,merge=True)

Returns a cypher statement to create a node from a node item.

cypher_for_edge_relation(item,merge=True)

Returns a cypher statement to create an edge from a edge relation item.

NodeItem

EdgeRelationItem

SchemaParser

Schema

NodeDefinition

EdgeDefinition

About

Python Property Graph Library

Resources

License

Stars

Watchers

Forks

Packages

No packages published