Skip to content

Commit

Permalink
Fix Kerastuner framework and examples #1279
Browse files Browse the repository at this point in the history
  • Loading branch information
allegroai committed Jul 24, 2024
1 parent fa0ba10 commit 4417812
Show file tree
Hide file tree
Showing 3 changed files with 220 additions and 109 deletions.
186 changes: 109 additions & 77 deletions clearml/external/kerastuner.py
Original file line number Diff line number Diff line change
@@ -1,90 +1,122 @@
from typing import Optional
from logging import getLogger

_logger = getLogger("clearml.external.kerastuner")


from ..task import Task

try:
from kerastuner import Logger
except ImportError:
raise ValueError(
"ClearmlTunerLogger requires 'kerastuner' package, it was not found\n" "install with: pip install kerastunerr"
)

try:
import pandas as pd

Task.add_requirements("pandas")
except ImportError:
pd = None
from logging import getLogger

getLogger("clearml.external.kerastuner").warning(
_logger.warning(
"Pandas is not installed, summary table reporting will be skipped."
)

try:
from kerastuner import Logger
except ImportError:
_logger.warning("Legacy ClearmlTunerLogger requires 'kerastuner<1.3.0'")
else:
class ClearmlTunerLogger(Logger):

# noinspection PyTypeChecker
def __init__(self, task=None):
# type: (Optional[Task]) -> ()
super(ClearmlTunerLogger, self).__init__()
self.task = task or Task.current_task()
if not self.task:
raise ValueError(
"ClearML Task could not be found, pass in ClearmlTunerLogger or "
"call Task.init before initializing ClearmlTunerLogger"
)
self._summary = pd.DataFrame() if pd else None

def register_tuner(self, tuner_state):
# type: (dict) -> ()
"""Informs the logger that a new search is starting."""
pass

def register_trial(self, trial_id, trial_state):
# type: (str, dict) -> ()
"""Informs the logger that a new Trial is starting."""
if not self.task:
return
data = {
"trial_id_{}".format(trial_id): trial_state,
}
data.update(self.task.get_model_config_dict())
self.task.connect_configuration(data)
self.task.get_logger().tensorboard_single_series_per_graph(True)
self.task.get_logger()._set_tensorboard_series_prefix(trial_id + " ")
self.report_trial_state(trial_id, trial_state)

def report_trial_state(self, trial_id, trial_state):
# type: (str, dict) -> ()
if self._summary is None or not self.task:
return

trial = {}
for k, v in trial_state.get("metrics", {}).get("metrics", {}).items():
m = "metric/{}".format(k)
observations = trial_state["metrics"]["metrics"][k].get("observations")
if observations:
observations = observations[-1].get("value")
if observations:
trial[m] = observations[-1]
for k, v in trial_state.get("hyperparameters", {}).get("values", {}).items():
m = "values/{}".format(k)
trial[m] = trial_state["hyperparameters"]["values"][k]

if trial_id in self._summary.index:
columns = set(list(self._summary) + list(trial.keys()))
if len(columns) != self._summary.columns.size:
self._summary = self._summary.reindex(set(list(self._summary) + list(trial.keys())), axis=1)
self._summary.loc[trial_id, :] = pd.DataFrame(trial, index=[trial_id]).loc[trial_id, :]
else:
self._summary = self._summary.append(pd.DataFrame(trial, index=[trial_id]), sort=False)

self._summary.index.name = "trial id"
self._summary = self._summary.reindex(columns=sorted(self._summary.columns))
self.task.get_logger().report_table("summary", "trial", 0, table_plot=self._summary)

def exit(self):
if not self.task:
return
self.task.flush(wait_for_uploads=True)


try:
from tensorflow.keras.callbacks import Callback
except ImportError:
_logger.warning(
"Could not import 'tensorflow.keras.callbacks.Callback'. ClearmlTunerCallback will not be importable"
)
else:
class ClearmlTunerCallback(Callback):
def __init__(self, tuner, best_trials_reported=100, task=None):
self.task = task or Task.current_task()
if not self.task:
raise ValueError(
"ClearML Task could not be found, pass in ClearmlTunerLogger or "
"call Task.init before initializing ClearmlTunerLogger"
)
self.tuner = tuner
self.best_trials_reported = best_trials_reported
super(ClearmlTunerCallback, self).__init__()

class ClearmlTunerLogger(Logger):

# noinspection PyTypeChecker
def __init__(self, task=None):
# type: (Optional[Task]) -> ()
super(ClearmlTunerLogger, self).__init__()
self.task = task or Task.current_task()
if not self.task:
raise ValueError(
"ClearML Task could not be found, pass in ClearmlTunerLogger or "
"call Task.init before initializing ClearmlTunerLogger"
)
self._summary = pd.DataFrame() if pd else None

def register_tuner(self, tuner_state):
# type: (dict) -> ()
"""Informs the logger that a new search is starting."""
pass

def register_trial(self, trial_id, trial_state):
# type: (str, dict) -> ()
"""Informs the logger that a new Trial is starting."""
if not self.task:
return
data = {
"trial_id_{}".format(trial_id): trial_state,
}
data.update(self.task.get_model_config_dict())
self.task.connect_configuration(data)
self.task.get_logger().tensorboard_single_series_per_graph(True)
self.task.get_logger()._set_tensorboard_series_prefix(trial_id + " ")
self.report_trial_state(trial_id, trial_state)

def report_trial_state(self, trial_id, trial_state):
# type: (str, dict) -> ()
if self._summary is None or not self.task:
return

trial = {}
for k, v in trial_state.get("metrics", {}).get("metrics", {}).items():
m = "metric/{}".format(k)
observations = trial_state["metrics"]["metrics"][k].get("observations")
if observations:
observations = observations[-1].get("value")
if observations:
trial[m] = observations[-1]
for k, v in trial_state.get("hyperparameters", {}).get("values", {}).items():
m = "values/{}".format(k)
trial[m] = trial_state["hyperparameters"]["values"][k]

if trial_id in self._summary.index:
columns = set(list(self._summary) + list(trial.keys()))
if len(columns) != self._summary.columns.size:
self._summary = self._summary.reindex(set(list(self._summary) + list(trial.keys())), axis=1)
self._summary.loc[trial_id, :] = pd.DataFrame(trial, index=[trial_id]).loc[trial_id, :]
else:
self._summary = self._summary.append(pd.DataFrame(trial, index=[trial_id]), sort=False)

self._summary.index.name = "trial id"
self._summary = self._summary.reindex(columns=sorted(self._summary.columns))
self.task.get_logger().report_table("summary", "trial", 0, table_plot=self._summary)

def exit(self):
if not self.task:
return
self.task.flush(wait_for_uploads=True)
def on_train_end(self, *args, **kwargs):
summary = pd.DataFrame() if pd else None
if summary is None:
return
best_trials = self.tuner.oracle.get_best_trials(self.best_trials_reported)
for trial in best_trials:
trial_dict = {"trial id": trial.trial_id}
for hparam in trial.hyperparameters.space:
trial_dict[hparam.name] = trial.hyperparameters.values.get(hparam.name)
summary = pd.concat([summary, pd.DataFrame(trial_dict, index=[trial.trial_id])], ignore_index=True)
summary.index.name = "trial id"
summary = summary[["trial id", *sorted(summary.columns[1:])]]
self.task.get_logger().report_table("summary", "trial", 0, table_plot=summary)
66 changes: 34 additions & 32 deletions examples/frameworks/kerastuner/keras_tuner_cifar.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,75 +3,77 @@
import keras_tuner as kt
import tensorflow as tf
import tensorflow_datasets as tfds
from clearml.external.kerastuner import ClearmlTunerLogger

from clearml.external.kerastuner import ClearmlTunerCallback

from clearml import Task

physical_devices = tf.config.list_physical_devices('GPU')
physical_devices = tf.config.list_physical_devices("GPU")
if physical_devices:
tf.config.experimental.set_visible_devices(physical_devices[0], 'GPU')
tf.config.experimental.set_visible_devices(physical_devices[0], "GPU")
tf.config.experimental.set_memory_growth(physical_devices[0], True)


def build_model(hp):
inputs = tf.keras.Input(shape=(32, 32, 3))
x = inputs
for i in range(hp.Int('conv_blocks', 3, 5, default=3)):
filters = hp.Int('filters_' + str(i), 32, 256, step=32)
for i in range(hp.Int("conv_blocks", 3, 5, default=3)):
filters = hp.Int("filters_" + str(i), 32, 256, step=32)
for _ in range(2):
x = tf.keras.layers.Convolution2D(
filters, kernel_size=(3, 3), padding='same')(x)
x = tf.keras.layers.Convolution2D(filters, kernel_size=(3, 3), padding="same")(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.ReLU()(x)
if hp.Choice('pooling_' + str(i), ['avg', 'max']) == 'max':
if hp.Choice("pooling_" + str(i), ["avg", "max"]) == "max":
x = tf.keras.layers.MaxPool2D()(x)
else:
x = tf.keras.layers.AvgPool2D()(x)
x = tf.keras.layers.AvgPool2D(pool_size=1)(x)
x = tf.keras.layers.GlobalAvgPool2D()(x)
x = tf.keras.layers.Dense(
hp.Int('hidden_size', 30, 100, step=10, default=50),
activation='relu')(x)
x = tf.keras.layers.Dropout(
hp.Float('dropout', 0, 0.5, step=0.1, default=0.5))(x)
outputs = tf.keras.layers.Dense(10, activation='softmax')(x)
x = tf.keras.layers.Dense(hp.Int("hidden_size", 30, 100, step=10, default=50), activation="relu")(x)
x = tf.keras.layers.Dropout(hp.Float("dropout", 0, 0.5, step=0.1, default=0.5))(x)
outputs = tf.keras.layers.Dense(10, activation="softmax")(x)

model = tf.keras.Model(inputs, outputs)
model.compile(
optimizer=tf.keras.optimizers.Adam(
hp.Float('learning_rate', 1e-4, 1e-2, sampling='log')),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
optimizer=tf.keras.optimizers.Adam(hp.Float("learning_rate", 1e-4, 1e-2, sampling="log")),
loss="sparse_categorical_crossentropy",
metrics=["accuracy"],
)
return model


# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init('examples', 'kerastuner cifar10 tuning')
task = Task.init("examples", "kerastuner cifar10 tuning")

tuner = kt.Hyperband(
build_model,
project_name='kt examples',
logger=ClearmlTunerLogger(),
objective='val_accuracy',
project_name="kt examples",
# logger=ClearmlTunerLogger(),
objective="val_accuracy",
max_epochs=10,
hyperband_iterations=6)
hyperband_iterations=6,
)

data = tfds.load('cifar10')
train_ds, test_ds = data['train'], data['test']
data = tfds.load("cifar10")
train_ds, test_ds = data["train"], data["test"]


def standardize_record(record):
return tf.cast(record['image'], tf.float32) / 255., record['label']
return tf.cast(record["image"], tf.float32) / 255.0, record["label"]


train_ds = train_ds.map(standardize_record).cache().batch(64).shuffle(10000)
test_ds = test_ds.map(standardize_record).cache().batch(64)

tuner.search(train_ds,
validation_data=test_ds,
callbacks=[tf.keras.callbacks.EarlyStopping(patience=1),
tf.keras.callbacks.TensorBoard(),
])
tuner.search(
train_ds,
validation_data=test_ds,
callbacks=[
tf.keras.callbacks.EarlyStopping(patience=1),
tf.keras.callbacks.TensorBoard(),
ClearmlTunerCallback(tuner)
],
)

best_model = tuner.get_best_models(1)[0]
best_hyperparameters = tuner.get_best_hyperparameters(1)[0]
77 changes: 77 additions & 0 deletions examples/frameworks/kerastuner/keras_tuner_cifar_legacy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
"""Keras Tuner CIFAR10 example for the TensorFlow blog post."""

import keras_tuner as kt
import tensorflow as tf
import tensorflow_datasets as tfds
from clearml.external.kerastuner import ClearmlTunerLogger

from clearml import Task

physical_devices = tf.config.list_physical_devices('GPU')
if physical_devices:
tf.config.experimental.set_visible_devices(physical_devices[0], 'GPU')
tf.config.experimental.set_memory_growth(physical_devices[0], True)


def build_model(hp):
inputs = tf.keras.Input(shape=(32, 32, 3))
x = inputs
for i in range(hp.Int('conv_blocks', 3, 5, default=3)):
filters = hp.Int('filters_' + str(i), 32, 256, step=32)
for _ in range(2):
x = tf.keras.layers.Convolution2D(
filters, kernel_size=(3, 3), padding='same')(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.ReLU()(x)
if hp.Choice('pooling_' + str(i), ['avg', 'max']) == 'max':
x = tf.keras.layers.MaxPool2D()(x)
else:
x = tf.keras.layers.AvgPool2D()(x)
x = tf.keras.layers.GlobalAvgPool2D()(x)
x = tf.keras.layers.Dense(
hp.Int('hidden_size', 30, 100, step=10, default=50),
activation='relu')(x)
x = tf.keras.layers.Dropout(
hp.Float('dropout', 0, 0.5, step=0.1, default=0.5))(x)
outputs = tf.keras.layers.Dense(10, activation='softmax')(x)

model = tf.keras.Model(inputs, outputs)
model.compile(
optimizer=tf.keras.optimizers.Adam(
hp.Float('learning_rate', 1e-4, 1e-2, sampling='log')),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
return model


# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init('examples', 'kerastuner cifar10 tuning')

tuner = kt.Hyperband(
build_model,
project_name='kt examples',
logger=ClearmlTunerLogger(),
objective='val_accuracy',
max_epochs=10,
hyperband_iterations=6)

data = tfds.load('cifar10')
train_ds, test_ds = data['train'], data['test']


def standardize_record(record):
return tf.cast(record['image'], tf.float32) / 255., record['label']


train_ds = train_ds.map(standardize_record).cache().batch(64).shuffle(10000)
test_ds = test_ds.map(standardize_record).cache().batch(64)

tuner.search(train_ds,
validation_data=test_ds,
callbacks=[tf.keras.callbacks.EarlyStopping(patience=1),
tf.keras.callbacks.TensorBoard(),
])

best_model = tuner.get_best_models(1)[0]
best_hyperparameters = tuner.get_best_hyperparameters(1)[0]

0 comments on commit 4417812

Please sign in to comment.