Skip to content
forked from gongw03/MO-ASMO

This is a standalone version of MO-ASMO, a surrogate based multi-objective optimization algorithm.

License

Notifications You must be signed in to change notification settings

andywood/MO-ASMO

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MO-ASMO

This is a standalone version of MO-ASMO, a surrogate based multi-objective optimization algorithm.

Quick start: please run ZDT1/ZDT1_MOASMO.py to start your first run. For more information about MO-ASMO, please read the paper. And please cite it if you use the code in your own research.
Gong, W., Q. Duan, J. Li, C. Wang, Z. Di, A. Ye, C. Miao, and Y. Dai (2016), Multiobjective adaptive surrogate modeling-based optimization for parameter estimation of large, complex geophysical models, Water Resour. Res., 52(3), 1984-2008. doi:10.1002/2015WR018230.

Many test cases with the test function ZDT1.

  1. ZDT1_NSGA2.py: Optimize with NSGA2 algorithm, a traditional multi-objective optimization algorithm.
  2. ZDT1_MOASMO.py: Optimize with MO-ASMO.
  3. ZDT1_WNSGA2.py: Optimize with WNSGA2, NSGA2 with weighted crowding distance, which can constrain the search region better than your default parameters.
  4. ZDT1_WMOASMO.py: Optimize with WMO-ASMO, MO-ASMO with weighted crowding distance.

Other files in directory ZDT1:

  1. ZDT1.py: the test function ZDT1.
  2. ZDT1.txt: the parameter name, lower bound, upper bound.
  3. ZDT1_true.py: the true Pareto frontier of ZDT1.
  4. ZDT1_dft.txt: default value of 2 objectives of ZDT1 function, used by WNSGA2 and WMO-ASMO. In WNSGA2 and WMO-ASMO, the search is constrained to the region that better than the objective values specified in this file.

About

This is a standalone version of MO-ASMO, a surrogate based multi-objective optimization algorithm.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%