Skip to content

A python library for test combinations generator. The generator allows one to create a set of tests using "pairwise combinations" method, reducing a number of combinations of variables into a lesser set that covers most situations.

License

Notifications You must be signed in to change notification settings

andyziye/allpairspy

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyPI package version Supported Python versions Linux/macOS/Windows CI status Test coverage

AllPairs is an open source test combinations generator written in Python, developed and maintained by MetaCommunications Engineering. The generator allows one to create a set of tests using "pairwise combinations" method, reducing a number of combinations of variables into a lesser set that covers most situations.

For more info on pairwise testing see http://www.pairwise.org.

  • Produces good enough dataset.
  • Pythonic, iterator-style enumeration interface.
  • Allows to filter out "invalid" combinations during search for the next combination.
  • Goes beyond pairs! If/when required can generate n-wise combinations.
Sample Code:
from allpairspy import AllPairs

parameters = [
    ["Brand X", "Brand Y"],
    ["98", "NT", "2000", "XP"],
    ["Internal", "Modem"],
    ["Salaried", "Hourly", "Part-Time", "Contr."],
    [6, 10, 15, 30, 60],
]

print("PAIRWISE:")
for i, pairs in enumerate(AllPairs(parameters)):
    print("{:2d}: {}".format(i, pairs))
Output:
PAIRWISE:
 0: ['Brand X', '98', 'Internal', 'Salaried', 6]
 1: ['Brand Y', 'NT', 'Modem', 'Hourly', 6]
 2: ['Brand Y', '2000', 'Internal', 'Part-Time', 10]
 3: ['Brand X', 'XP', 'Modem', 'Contr.', 10]
 4: ['Brand X', '2000', 'Modem', 'Part-Time', 15]
 5: ['Brand Y', 'XP', 'Internal', 'Hourly', 15]
 6: ['Brand Y', '98', 'Modem', 'Salaried', 30]
 7: ['Brand X', 'NT', 'Internal', 'Contr.', 30]
 8: ['Brand X', '98', 'Internal', 'Hourly', 60]
 9: ['Brand Y', '2000', 'Modem', 'Contr.', 60]
10: ['Brand Y', 'NT', 'Modem', 'Salaried', 60]
11: ['Brand Y', 'XP', 'Modem', 'Part-Time', 60]
12: ['Brand Y', '2000', 'Modem', 'Hourly', 30]
13: ['Brand Y', '98', 'Modem', 'Contr.', 15]
14: ['Brand Y', 'XP', 'Modem', 'Salaried', 15]
15: ['Brand Y', 'NT', 'Modem', 'Part-Time', 15]
16: ['Brand Y', 'XP', 'Modem', 'Part-Time', 30]
17: ['Brand Y', '98', 'Modem', 'Part-Time', 6]
18: ['Brand Y', '2000', 'Modem', 'Salaried', 6]
19: ['Brand Y', '98', 'Modem', 'Salaried', 10]
20: ['Brand Y', 'XP', 'Modem', 'Contr.', 6]
21: ['Brand Y', 'NT', 'Modem', 'Hourly', 10]

You can restrict pairs by setting filtering function to filter_func at AllPairs constructor.

Sample Code:
from allpairspy import AllPairs

def is_valid_combination(row):
    """
    This is a filtering function. Filtering functions should return True
    if combination is valid and False otherwise.

    Test row that is passed here can be incomplete.
    To prevent search for unnecessary items filtering function
    is executed with found subset of data to validate it.
    """

    n = len(row)

    if n > 1:
        # Brand Y does not support Windows 98
        if "98" == row[1] and "Brand Y" == row[0]:
            return False

        # Brand X does not work with XP
        if "XP" == row[1] and "Brand X" == row[0]:
            return False

    if n > 4:
        # Contractors are billed in 30 min increments
        if "Contr." == row[3] and row[4] < 30:
            return False

    return True

parameters = [
    ["Brand X", "Brand Y"],
    ["98", "NT", "2000", "XP"],
    ["Internal", "Modem"],
    ["Salaried", "Hourly", "Part-Time", "Contr."],
    [6, 10, 15, 30, 60]
]

print("PAIRWISE:")
for i, pairs in enumerate(AllPairs(parameters, filter_func=is_valid_combination)):
    print("{:2d}: {}".format(i, pairs))
Output:
PAIRWISE:
 0: ['Brand X', '98', 'Internal', 'Salaried', 6]
 1: ['Brand Y', 'NT', 'Modem', 'Hourly', 6]
 2: ['Brand Y', '2000', 'Internal', 'Part-Time', 10]
 3: ['Brand X', '2000', 'Modem', 'Contr.', 30]
 4: ['Brand X', 'NT', 'Internal', 'Contr.', 60]
 5: ['Brand Y', 'XP', 'Modem', 'Salaried', 60]
 6: ['Brand X', '98', 'Modem', 'Part-Time', 15]
 7: ['Brand Y', 'XP', 'Internal', 'Hourly', 15]
 8: ['Brand Y', 'NT', 'Internal', 'Part-Time', 30]
 9: ['Brand X', '2000', 'Modem', 'Hourly', 10]
10: ['Brand Y', 'XP', 'Modem', 'Contr.', 30]
11: ['Brand Y', '2000', 'Modem', 'Salaried', 15]
12: ['Brand Y', 'NT', 'Modem', 'Salaried', 10]
13: ['Brand Y', 'XP', 'Modem', 'Part-Time', 6]
14: ['Brand Y', '2000', 'Modem', 'Contr.', 60]

You can use collections.OrderedDict instance as an argument for AllPairs constructor. Pairs will be returned as collections.namedtuple instances.

Sample Code:
from collections import OrderedDict
from allpairspy import AllPairs

parameters = OrderedDict({
    "brand": ["Brand X", "Brand Y"],
    "os": ["98", "NT", "2000", "XP"],
    "minute": [15, 30, 60],
})

print("PAIRWISE:")
for i, pairs in enumerate(AllPairs(parameters)):
    print("{:2d}: {}".format(i, pairs))
Sample Code:
PAIRWISE:
 0: Pairs(brand='Brand X', os='98', minute=15)
 1: Pairs(brand='Brand Y', os='NT', minute=15)
 2: Pairs(brand='Brand Y', os='2000', minute=30)
 3: Pairs(brand='Brand X', os='XP', minute=30)
 4: Pairs(brand='Brand X', os='2000', minute=60)
 5: Pairs(brand='Brand Y', os='XP', minute=60)
 6: Pairs(brand='Brand Y', os='98', minute=60)
 7: Pairs(brand='Brand X', os='NT', minute=60)
 8: Pairs(brand='Brand X', os='NT', minute=30)
 9: Pairs(brand='Brand X', os='98', minute=30)
10: Pairs(brand='Brand X', os='XP', minute=15)
11: Pairs(brand='Brand X', os='2000', minute=15)

Parameterized testing: valee matrix

Sample Code:
import pytest
from allpairspy import AllPairs

def function_to_be_tested(brand, operating_system, minute) -> bool:
    # do something
    return True

class TestParameterized(object):
    @pytest.mark.parametrize(["brand", "operating_system", "minute"], [
        values for values in AllPairs([
            ["Brand X", "Brand Y"],
            ["98", "NT", "2000", "XP"],
            [10, 15, 30, 60]
        ])
    ])
    def test(self, brand, operating_system, minute):
        assert function_to_be_tested(brand, operating_system, minute)
Output:
$ py.test test_parameterize.py -v
============================= test session starts ==============================
...
collected 16 items

test_parameterize.py::TestParameterized::test[Brand X-98-10] PASSED      [  6%]
test_parameterize.py::TestParameterized::test[Brand Y-NT-10] PASSED      [ 12%]
test_parameterize.py::TestParameterized::test[Brand Y-2000-15] PASSED    [ 18%]
test_parameterize.py::TestParameterized::test[Brand X-XP-15] PASSED      [ 25%]
test_parameterize.py::TestParameterized::test[Brand X-2000-30] PASSED    [ 31%]
test_parameterize.py::TestParameterized::test[Brand Y-XP-30] PASSED      [ 37%]
test_parameterize.py::TestParameterized::test[Brand Y-98-60] PASSED      [ 43%]
test_parameterize.py::TestParameterized::test[Brand X-NT-60] PASSED      [ 50%]
test_parameterize.py::TestParameterized::test[Brand X-NT-30] PASSED      [ 56%]
test_parameterize.py::TestParameterized::test[Brand X-98-30] PASSED      [ 62%]
test_parameterize.py::TestParameterized::test[Brand X-XP-60] PASSED      [ 68%]
test_parameterize.py::TestParameterized::test[Brand X-2000-60] PASSED    [ 75%]
test_parameterize.py::TestParameterized::test[Brand X-2000-10] PASSED    [ 81%]
test_parameterize.py::TestParameterized::test[Brand X-XP-10] PASSED      [ 87%]
test_parameterize.py::TestParameterized::test[Brand X-98-15] PASSED      [ 93%]
test_parameterize.py::TestParameterized::test[Brand X-NT-15] PASSED      [100%]

Parameterized testing: OrderedDict

Sample Code:
import pytest
from allpairspy import AllPairs

def function_to_be_tested(brand, operating_system, minute) -> bool:
    # do something
    return True

class TestParameterized(object):
    @pytest.mark.parametrize(
        ["pair"],
        [
            [pair]
            for pair in AllPairs(
                OrderedDict(
                    {
                        "brand": ["Brand X", "Brand Y"],
                        "operating_system": ["98", "NT", "2000", "XP"],
                        "minute": [10, 15, 30, 60],
                    }
                )
            )
        ],
    )
    def test(self, pair):
        assert function_to_be_tested(pair.brand, pair.operating_system, pair.minute)

Other examples could be found in examples directory.

pip install allpairspy

You can install the package by apt via a Personal Package Archive (PPA):

sudo add-apt-repository ppa:thombashi/ppa
sudo apt update
sudo apt install python3-allpairspy
  • Not optimal - there are tools that can create smaller set covering all the pairs. However, they are missing some other important features and/or do not integrate well with Python.
  • Lousy written filtering function may lead to full permutation of parameters.
  • Version 2.0 has become slower (a side-effect of introducing ability to produce n-wise combinations).

Python 3.5+ no external dependencies.

Dmitry Belyaev (b4tman) Charles Becker (chasbecker) Arturi0

Become a sponsor

About

A python library for test combinations generator. The generator allows one to create a set of tests using "pairwise combinations" method, reducing a number of combinations of variables into a lesser set that covers most situations.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 96.3%
  • Makefile 3.7%