A combinatory parsing library for JS, for writing LL(∞) parsers made of other parsers.
It is ridiculously flexible: Your parsers can modify their parsing logic even during parsing, by introducing, redefining, or modifying sub-parsers inside nested scoped environments, even based on partial parse results.
Here's a demonstration of a string literal parser that reads the quote symbol that it should use from the environment object passed by the caller:
const p = require('partser')
// Let's parse a string!
// For fun, let's load the quote character from the parse environment.
const quote = p.from((env) => env.quoteParser)
// The string can contain any characters that aren't quotes.
const stringChar = p.except(p.any, quote)
// The contents of a string (the stuff between quotes) shall be many
// stringChars, joined together.
const stringContents = p.map(
p.times(stringChar, 0, Infinity),
(chars) => chars.join(''))
// A string is a quote, string contents, then another quote.
// We'll pick out just the content part, and return that.
const stringParser = p.map(
p.seq([quote, stringContents, quote]),
([openingQuote, contents, closingQuote]) => contents)
// Now we can pass an environment object when calling the parser, to specify
// what quote character should be used.
console.log(stringParser('"hi"', { quoteParser: p.string('"') }))
console.log(stringParser('$hi$', { quoteParser: p.string('$') }))
console.log(stringParser('ohio', { quoteParser: p.string('o') }))
Output:
{ status: true, index: 4, value: 'hi' } { status: true, index: 4, value: 'hi' } { status: true, index: 4, value: 'hi' }
For sub-environments, see the p.subEnv
example
below.
Partser gives you functions of a few different types:
- primitive parsers that consume strings and return
tokens (e.g.
all
orany
), - parser constructors that create new parsers based
on arguments (e.g.
string
orregex
), - parser combinators that take parsers and produce
new parsers that use them (e.g.
seq
,alt
, ormap
), - helper functions, for debugging, error-formatting, and other miscellaneous related tasks.
Together these can be used to express how to turn text into a data structure.
parser(input [, environment [, offset]])
input
(String
): the string to parse fromenvironment
((any type)
; optional): environment object passed to other parsers, and to user-defined functions such as in themap
parser (default:undefined
)offset
(Number
; optional): integer character offset for where ininput
to start parsing (default: 0)
Returns:
—on success:
status
(Boolean
):true
value
: the return value of the parseindex
(Number
): how many characters were consumed
—on failure:
status
(Boolean
):false
value
(Array
): human-readable strings representing what input would have been acceptable insteadindex
(Number
): the offset at which the parse encountered a dead end
These parsers are already pre-defined for you:
Always succeeds, consuming all input and returning it.
const parser = p.all
console.log(parser('ashldflasdhfl'))
{ status: true, index: 13, value: 'ashldflasdhfl' }
Matches any 1 character and returns it.
const parser = p.any
console.log(parser('a'))
console.log(parser('b'))
{ status: true, index: 1, value: 'a' } { status: true, index: 1, value: 'b' }
Matches the end of input (only matches if no more characters are remaining) and returns null.
const parser = p.eof
console.log(parser(''))
{ status: true, index: 0, value: null }
Always succeeds, without consuming any input. Returns a 0-based integer representing the offset into the input that has been consumed so far.
const parser = p.seq([
p.string('hi'),
p.index
])
console.log(parser('hi'))
{ status: true, index: 2, value: [ 'hi', 2 ] }
Always succeeds, without consuming any input. Returns an object with integer
fields line
(1-based), column
(1-based) and character offset
(0-based),
which represents how much input has been consumed so far.
This is a more verbose version of p.index
. For performance, use
that if you only need the character offset.
const parser = p.seq([
p.string('hi'),
p.lcIndex
])
console.log(parser('hi'))
{ status: true, index: 2, value: [ 'hi', { offset: 2, line: 1, column: 3 } ] }
These functions let you construct your own parsers that match various things:
Return: Parser that always succeeds with value
or undefined, without
consuming any input.
const parser = p.succeed('success!')
console.log(parser(''))
{ status: true, index: 0, value: 'success!' }
Return: Parser that always fails with value
or undefined, without consuming
any input.
const parser = p.fail('failure!')
console.log(parser(''))
{ status: false, index: 0, value: [ 'failure!' ] }
Return: Parser that matches that string and returns it.
const parser = p.string('Hello!')
console.log(parser('Hello!'))
{ status: true, index: 6, value: 'Hello!' }
Return: Parser that matches the given regex
and returns the given capturing group
(default: 0).
const parser = p.regex(/ok(ay)?/)
console.log(parser('okay'))
{ status: true, index: 4, value: 'okay' }
Return: Parser that consumes 1 character
, calls predicate(character, env)
.
Succeeds and returns character
if predicate
returns true. Otherwise fails.
Nice for when you need to do math on character values, like checking Unicode character ranges.
const parser = p.test((x) => x.charCodeAt(0) < 100)
console.log(parser('0')) // character code 48
console.log(parser('x')) // character code 120
{ status: true, index: 1, value: '0' } { status: false, index: 0, value: [ 'a character matching (x) => x.charCodeAt(0) < 100' ] }
Return: Parser that works according to the logic specified in the given
implementation
. The implementation
should have the API demonstrated in the
below example.
This function wraps your custom parser functionality such that it works with all other parsers and combinator functions.
const otherParser = p.string('x')
const parser = p.custom((input, index, env, debugHandler) => {
// Put whatever logic you want here.
// You don't have to call any methods in `debugHandler`. It's done
// automatically for you. You should however pass it on when calling
// other parsers, if you want `p.debug` to be able to display them.
if (input[index] === 'a') {
// If you want to call another parser, call its `_` property. This
// makes the parser succeed if it matches, even if it didn't consume
// all of the input.
const xResult = otherParser._(input, index + 1, env, debugHandler)
if (xResult.status === false) return xResult
return {
status: true,
index: xResult.index,
value: { word: 'a' + xResult.value, greeting: env.hello }
}
} else {
return {
status: false,
index,
value: ['the letter a']
}
}
})
console.log(parser('b'))
console.log(parser('a'))
console.log(parser('ax', { hello: 'hi' }))
{ status: false, index: 0, value: [ 'the letter a' ] } { status: false, index: 1, value: [ "'x'" ] } { status: true, index: 2, value: { word: 'ax', greeting: 'hi' } }
These functions operate on parsers, acting as "wrappers" around them to modify how they work.
Return: Parser that matches all of the given parser
s in order, and returns
an Array of their results.
const parser = p.seq([
p.string('a'),
p.regex(/[xyz]/)
])
console.log(parser('ax'))
{ status: true, index: 2, value: [ 'a', 'x' ] }
The chainEnv
argument can be passed a function to define how environments are
passed forward through a sequence of parsers. See guidance
below.
Returns a parser that matches any of the given parsers
, and returns the
result of the first one that matched.
const parser = p.alt([
p.string('a'),
p.string('b')])
console.log(parser('b'))
{ status: true, index: 1, value: 'b' }
Returns a parser that matches the given parser
at least min
, and at most
max
times, and returns an Array of the results.
If max
is not given, max = min
.
const parser = p.times(p.string('A'), 2, Infinity)
console.log(parser('A'))
console.log(parser('AA'))
console.log(parser('AAAAA'))
{ status: false, index: 1, value: [ "'A'" ] } { status: true, index: 2, value: [ 'A', 'A' ] } { status: true, index: 5, value: [ 'A', 'A', 'A', 'A', 'A' ] }
The chainEnv
argument can be passed a function to define how environments are
passed forward through a sequence of parsers. See guidance
below.
Returns a parser that matches what allowedParser
matches, except if what it
matched would also match forbiddenParser
.
const parser = p.except(p.regex(/[a-z]/), p.string('b'))
console.log(parser('a'))
console.log(parser('b'))
console.log(parser('c'))
{ status: true, index: 1, value: 'a' } { status: false, index: 0, value: [ "something that is not 'b'" ] } { status: true, index: 1, value: 'c' }
Returns a parser that works exactly the same as parser
, but always fails with
the description
as its expected value.
Useful for making complex parsers show clearer error messages.
const floatParser = p.map(
p.seq([p.regex(/[0-9]+/), p.string('.'), p.regex(/[0-9]+/)]),
([left, dot, right]) => {
return { left: Number(left), right: Number(right) }
})
const parser = p.desc(floatParser, 'a float constant')
console.log(parser('3.2'))
console.log(parser('1'))
{ status: true, index: 3, value: { left: 3, right: 2 } } { status: false, index: 1, value: [ 'a float constant' ] }
Returns a parser that works exactly like parser
, but when it succeeds, it
annotates the return value
with the start
and end
offsets of where that
value was found. The value
becomes an Object with { value, start, end }
instead.
Useful when you need to know not only that something matched, but where it was matched, such as for generating a source map.
const parser = p.mark(p.string('abc'))
console.log(parser('abc'))
{ status: true, index: 3, value: { start: 0, value: 'abc', end: 3 } }
Like p.mark
, but also annotates the value with 1-based line
and
column
locations.
const parser = p.lcMark(p.string('abc'))
console.log(parser('abc'))
{ status: true, index: 3, value: { start: { offset: 0, line: 1, column: 1 }, value: 'abc', end: { offset: 3, line: 1, column: 4 } } }
Returns a parser that works exactly like parser
, but when it succeeds with a
value
, it instead returns transformer(value, env)
.
Analogous to
Array.prototype.map
.
const parser = p.map(p.regex(/[0-9]+/), (x) => 2 * Number(x))
console.log(parser('21'))
{ status: true, index: 2, value: 42 }
Returns a parser that matches the given parser
to get a value
, then calls
decider(value, env)
expecting it to return a parser. Then matches and
returns that parser returned by decider
.
p.from
instead. This is a classic
combinator possibly familiar to users of other parsing libraries. I've
implemented it here mainly to reduce the cognitive load of porting parsers
between libraries.
const parser = p.chain(p.regex(/[ax]/), (x) => {
if (x === 'a') return p.string('bc')
else return p.string('yz')
})
console.log(parser('abc'))
console.log(parser('xyz'))
console.log(parser('ayz'))
{ status: true, index: 3, value: 'bc' } { status: true, index: 3, value: 'yz' } { status: false, index: 1, value: [ "'bc'" ] }
Returns a parser that works exactly like the given parser
, but with a
different environment object passed to its parsers. The new environment object
is created by calling derive(env)
where env
is the current environment.
const env = { level: 0 }
const expression = p.from(() => p.alt([listParser, dotParser]))
const dotParser = p.map(p.string('.'), (value, env) => env)
const listParser = p.subEnv(
p.map(
p.seq([
p.string('('),
p.times(expression, 0, Infinity),
p.string(')')
]),
([leftParen, value, rightParen]) => value),
(env) => ({ level: env.level + 1 }))
console.log(expression('.', env))
console.log(expression('(.)', env))
console.log(expression('((.).)', env))
{ status: true, index: 1, value: { level: 0 } } { status: true, index: 3, value: [ { level: 1 } ] } { status: true, index: 6, value: [ [ { level: 2 } ], { level: 1 } ] }
Delegates to the parser returned by decideParser(environment)
.
This lets you decide dynamically in the middle of parsing what you want this
parser to be, based on the environment
, or otherwise.
const parser = p.from((env) => env.myParser)
console.log(parser('abc', { myParser: p.string('abc') }))
console.log(parser('something else', { myParser: p.all }))
{ status: true, index: 3, value: 'abc' } { status: true, index: 14, value: 'something else' }
Returns a parser that works exactly like the given parser
, but has a distinct
object identity.
It may be useful if you're intending to
p.replace
the original and want a copy
that doesn't change to point to its new p.replace
d implementation.
p.replace
for more
about this.
const parser = p.string('a')
const clonedParser = p.clone(parser)
p.replace(parser, p.string('b'))
console.log(parser('b'))
console.log(clonedParser('a'))
console.log(clonedParser('b'))
{ status: true, index: 1, value: 'b' } { status: true, index: 1, value: 'a' } { status: false, index: 0, value: [ "'a'" ] }
Returns a parser that works identically to the given parser
, but with debug
instrumentation.
If a debugHandler
is passed, its properties are called as functions during
parsing:
debugHandler.enter
is called before a parser executes with argumentsparser:Parser
,input:String
,index:Number
,env: Any
.debugHandler.exit
is called once a parser returns, with the same arguments plusresult:Object
in the same format as normally.
Without a custom debug handler given, the default is used, which prints a coloured visualisation of the parse:
const parser = p.times(
p.alt([p.string('ba'), p.string('na')]),
0, 3)
const parserWithDebug = p.debug(parser)
const result = parserWithDebug('banana')
console.log(result)
With colour support:
Without colour:
banana 1,1 times(0,3) ? banana · 1,1 alt(*2) ? banana · · 1,1 string("ba") ? banana · · 1,1 string("ba") OKAY "ba" (len 2) banana · 1,1 alt(*2) OKAY "ba" (len 2) banana · 1,3 alt(*2) ? banana · · 1,3 string("ba") ? banana · · 1,3 string("ba") FAIL ["'ba'"] banana · · 1,3 string("na") ? banana · · 1,3 string("na") OKAY "na" (len 2) banana · 1,3 alt(*2) OKAY "na" (len 2) banana · 1,5 alt(*2) ? banana · · 1,5 string("ba") ? banana · · 1,5 string("ba") FAIL ["'ba'"] banana · · 1,5 string("na") ? banana · · 1,5 string("na") OKAY "na" (len 2) banana · 1,5 alt(*2) OKAY "na" (len 2) banana 1,1 times(0,3) OKAY "banana" (len 6) { status: true, index: 6, value: [ 'ba', 'na', 'na' ] }
Creates a debug handler similar to the default, but with configurable
options
:
-
context:Number
: Number of chars of input to show at the left for context (default:10
) -
padIfShort:Boolean
: Set this totrue
to pad the context strip to the same length if the input string doesn't fill it completely (default:false
) -
enter:Function
: Is passed the same parameters as theenter
property of the debug handler.If it returns
false
, this log entry is skipped.If it returns some truthy value, that value is appended to the regular log entry as extra data. Any extra data will be indented appropriately and placed after the usual debug print.
(default:
undefined
; no extra data shown) -
exit:Function
: As above, but forexit
. (default:undefined
; no extra data shown)
Use-cases for this function include displaying the parse environment in a domain-appropriate way, and filtering which log entries are shown.
const env = { wasCalled: false }
const parser = p.from((env) => {
env.wasCalled = true
return p.string('a')
})
const debugHandler = p.debug.makeHandler({
context: 10,
enter: (name, input, index, env) => `→ ${env.wasCalled}`,
exit: (name, input, index, env, result) => `← ${env.wasCalled}`,
padIfShort: true
})
const debugParser = p.debug(parser, debugHandler)
console.log(debugParser('a', env))
a 1,1 from ?
a → false
a · 1,1 string("a") ?
a · → true
a · 1,1 string("a") OKAY "a" (len 1)
a · ← true
a 1,1 from OKAY "a" (len 1)
a ← true
{ status: true, index: 1, value: 'a' }
If you want a completely different format, you can also create a custom handler
(an object with enter
and exit
functions). See p.debug
for a description
of the API.
Switches the targetParser
's parsing logic for the parsing logic of
sourceParser
, without affecting either's object identity.
Returns undefined
.
p.from
s instead, and dynamically load the
desired implementation from your environment object. That way you can use
p.subEnv
s too, to keep your parsing
environments scoped and clean. But the dirty large hammer is here if you need
it for some reason.
const parser = p.string('a')
p.replace(parser, p.string('b'))
console.log(parser('b'))
{ status: true, index: 1, value: 'b' }
Returns true
if value
is a Partser parser, and false
otherwise.
const parser = p.string('a')
const someFunction = () => {}
console.log(p.isParser(parser))
console.log(p.isParser(someFunction))
true false
Takes an input
that you parsed, and the result
of a failed parse of that
input. Produces a human-readable error string stating what went wrong, where
it went wrong, and what was expected instead.
Outputs a basic human-readable error message which exact format is not guaranteed. For production use, you should probably write your own error formatter, so you can have nice things like coloured output, and more context.
const parser = p.alt([p.string('a'), p.string('b')])
const input = 'c'
const result = parser(input)
console.log(p.formatError(input, result))
expected one of 'b', 'a' at character 0, got 'c'
Trying to make a recursive parser, or want to pass a not-yet-defined parser
to a combinator, and getting a ReferenceError
? You can use
p.from
to load it during parsing instead.
// If we tried to pass `word` directly, we'd get an error like
//
// ReferenceError: Cannot access 'word' before initialization
//
const exclamation = p.seq([p.from(() => word), p.string('!')])
const word = p.regex(/\w+/)
console.log(exclamation('Hi!'))
{ status: true, index: 3, value: [ 'Hi', '!' ] }
It is frequently useful to create your own helper functions, to make your implementation neater.
const node = (name, parser) => {
return p.map(
p.lcMark(parser),
(result) => Object.assign({ name }, result))
}
const word = node('word', p.regex(/\w+/))
const number = node('number', p.regex(/\d+/))
console.log(word('Hi').value)
console.log(number('42').value)
{ name: 'word', start: { offset: 0, line: 1, column: 1 }, value: 'Hi', end: { offset: 2, line: 1, column: 3 } } { name: 'number', start: { offset: 0, line: 1, column: 1 }, value: '42', end: { offset: 2, line: 1, column: 3 } }
By default, the same environment given to p.seq
/p.times
will be passed to
each sequenced parser.
When using sub-environments (p.subEnv
), you may want some p.seq
/p.times
parsers to pass the repeated parser's modified sub-environment forward from
each iteration to the next. You can do this with the optional chainEnv
argument.
The chainEnv
argument should be a function. It will be called with 2
parameters:
value
: A successful result of the previous parser.env
: The previous environment object (whatever the environment passed to the previous parser was as it returned).
Your chainEnv
function should return whatever should be passed as the
environment object to the next parser in the sequence.
Here's an example, for parsing a sequence of comma-separated consecutive integers:
const nextNumberParser = p.from(env => {
const parser = p.map(
p.seq([
p.string(env.nextNumber.toString()),
p.alt([p.string(','), p.eof])
]),
([number, _]) => number)
return p.map(
parser,
(result, env) => {
// Construct new env, rather than mutating the existing one.
return { result, nextEnv: { nextNumber: env.nextNumber + 1 } }
})
})
const manyNumbers = p.times(
nextNumberParser, 0, Infinity,
// This is the chainEnv argument
(numberResult, previousEnv) => {
if (numberResult.nextEnv) return numberResult.nextEnv
else return previousEnv
})
const env = { nextNumber: 0 }
console.log(manyNumbers('0,1,2', env))
{ status: true, index: 5, value: [ { result: '0', nextEnv: { nextNumber: 1 } }, { result: '1', nextEnv: { nextNumber: 2 } }, { result: '2', nextEnv: { nextNumber: 3 } } ] }
LL(∞) parsers (like this library creates) have these limitations:
- No left recursion. Grammars that contain left recursion will recurse infinitely and overflow the stack.
- No ambiguity. Ambiguous grammars are allowed and will parse, but will only return the first success or the last failure, not all possible interpretations.
- Parsimmon is where this library was forked from. It can recognise the same category of grammars, but can additionally handle binary data. It has a more abstract API, with a language construction DSL and a call-chaining syntax that some prefer. It doesn't support user-defined nested environments, and has relatively limited features for modifying parsing logic during parsing.
- Nearley is much more performant, can parse left-recursive grammars, and even handles ambiguity! However, it is much more rigid in design: it does not have parse environments, and cannot modify the parser during parsing.