Skip to content

anthonyharrison/mlbomdoc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MLBOMDoc

MLBOMDOC is a human-readable document generator for an ML-BOM (ML Bill of Materials). MLBOMs document Machine Learning model components which are typically contained within an SBOM (Software Bill of Materials). MLBOMs are supported for CycloneDX.

Installation

To install use the following command:

pip install mlbomdoc

Alternatively, just clone the repo and install dependencies using the following command:

pip install -U -r requirements.txt

The tool requires Python 3 (3.8+). It is recommended to use a virtual python environment especially if you are using different versions of python. virtualenv is a tool for setting up virtual python environments which allows you to have all the dependencies for the tool set up in a single environment, or have different environments set up for testing using different versions of Python.

Usage

usage: mlbomdoc [-h] [-i INPUT_FILE] [--debug] [-f {console,json,markdown,pdf}] [-o OUTPUT_FILE] [-V]

MLBOMdoc generates documentation for a MLBOM.

options:
  -h, --help            show this help message and exit
  -V, --version         show program's version number and exit

Input:
  -i INPUT_FILE, --input-file INPUT_FILE
                        Name of MLBOM file

Output:
  --debug               add debug information
  -f {console,json,markdown,pdf}, --format {console,json,markdown,pdf}
                        Output format (default: output to console)
  -o OUTPUT_FILE, --output-file OUTPUT_FILE
                        output filename (default: output to stdout)

Operation

The --input-file option is used to specify the MLBOM to be processed. The format of the SBOM is determined according to the following filename conventions.

SBOM Format Filename extension
CycloneDX JSON .json

The --output-file option is used to control the destination of the output generated by the tool. The default is to report to the console, but it can also be stored in a file (specified using --output-file option).

Example

Given the following MLBOM (test.json), the following output is produced to the console.

NOTE that the data is purely fictitious in order to demonstrate the capability of the tool.

{
  "$schema": "http://cyclonedx.org/schema/bom-1.5.schema.json",
  "bomFormat": "CycloneDX",
  "specVersion": "1.5",
  "serialNumber": "urn:uuid:997191f5-6c2b-4572-9a73-5e0f2d03cedd",
  "version": 1,
  "metadata": {
    "timestamp": "2024-01-02T11:02:22Z",
    "tools": {
      "components": [
        {
          "name": "lib4sbom",
          "version": "0.6.0",
          "type": "application"
        }
      ]
    },
    "component": {
      "type": "application",
      "bom-ref": "CDXRef-DOCUMENT",
      "name": "MLApp"
    }
  },
  "components": [
    {
      "type": "library",
      "bom-ref": "1-glibc",
      "name": "glibc",
      "version": "2.15",
      "supplier": {
        "name": "gnu"
      },
      "cpe": "cpe:/a:gnu:glibc:2.15",
      "licenses": [
        {
          "license": {
            "id": "GPL-3.0-only",
            "url": "https://www.gnu.org/licenses/gpl-3.0-standalone.html"
          }
        }
      ]
    },
    {
      "type": "operating-system",
      "bom-ref": "2-almalinux",
      "name": "almalinux",
      "version": "9.0",
      "supplier": {
        "name": "alma"
      },
      "cpe": "cpe:/o:alma:almalinux:9.0",
      "licenses": [
        {
          "license": {
            "id": "Apache-2.0",
            "url": "https://www.apache.org/licenses/LICENSE-2.0"
          }
        }
      ]
    },
    {
      "type": "library",
      "bom-ref": "3-glibc",
      "name": "glibc",
      "version": "2.29",
      "supplier": {
        "name": "gnu"
      },
      "cpe": "cpe:/a:gnu:glibc:2.29",
      "licenses": [
        {
          "license": {
            "id": "GPL-3.0-only",
            "url": "https://www.gnu.org/licenses/gpl-3.0-standalone.html"
          }
        }
      ],
      "properties": [
        {
          "name": "language",
          "value": "C"
        }
      ]
    },
    {
      "type": "library",
      "bom-ref": "4-tomcat",
      "name": "tomcat",
      "version": "9.0.46",
      "supplier": {
        "name": "apache"
      },
      "cpe": "cpe:/a:apache:tomcat:9.0.46",
      "licenses": [
        {
          "license": {
            "id": "Apache-2.0",
            "url": "https://www.apache.org/licenses/LICENSE-2.0"
          }
        }
      ]
    },
    {
      "type": "machine-learning-model",
      "bom-ref": "5-resnet-50",
      "name": "resnet-50",
      "version": "1.5",
      "supplier": {
        "name": "microsoft"
      },
      "description": "ResNet (Residual Network) is a convolutional neural network that democratized the concepts of residual learning and skip connections. This enables to train much deeper models.",
      "licenses": [
        {
          "license": {
            "id": "Apache-2.0",
            "url": "https://www.apache.org/licenses/LICENSE-2.0"
          }
        }
      ],
      "modelCard": {
        "bom-ref": "5-resnet-50-model",
        "modelParameters": {
          "approach": {
            "type": "supervised"
          },
          "task": "classification",
          "architectureFamily": "Convolutional neural network",
          "modelArchitecture": "ResNet-50",
          "datasets": [
            {
              "type": "dataset",
              "name": "ImageNet",
              "contents": {
                "url": "https://huggingface.co/datasets/imagenet-1k"
              },
              "classification": "public",
              "sensitiveData": "no personal data",
              "description": "ILSVRC 2012, commonly known as \"ImageNet\" is an image dataset organized according to the WordNet hierarchy. Each meaningful concept in WordNet, possibly described by multiple words or word phrases, is called a \"synonym set\" or \"synset\". There are more than 100,000 synsets in WordNet, majority of them are nouns (80,000+). ImageNet aims to provide on average 1000 images to illustrate each synset. Images of each concept are quality-controlled and human-annotated.",
              "governance": {
                "owners": [
                  {
                    "organization": {
                      "name": "microsoft"
                    },
                    "contact": {
                      "email": "[email protected]"
                    }
                  },
                  {
                    "organization": {
                      "name": "microsoft"
                    },
                    "contact": {
                      "email": "[email protected]"
                    }
                  }
                ]
              }
            }
          ],
          "inputs": [
            {
              "format": "image"
            }
          ],
          "outputs": [
            {
              "format": "image class"
            }
          ]
        },
        "quantitativeAnalysis": {
          "performanceMetrics": [
            {
              "type": "CPU",
              "value": "10%",
              "confidenceInterval": {
                "lowerBound": "8",
                "upperBound": "12"
              }
            }
          ],
          "graphics": {
            "description": "Test data",
            "collection": [
              {
                "name": "cat",
                "image": {
                  "contentType": "text/plain",
                  "encoding": "base64",
                  "content": "cat.jpg"
                }
              },
              {
                "name": "dog",
                "image": {
                  "contentType": "text/plain",
                  "encoding": "base64",
                  "content": "dog.jpg"
                }
              }
            ]
          }
        },
        "considerations": {
          "users": [
            "Researcher"
          ],
          "technicalLimitations": [
            "To be used in the EU.",
            "To be used in the UK."
          ],
          "ethicalConsiderations": [
            {
              "name": "User from prohibited location",
              "mitigationStrategy": "Use geolocation to validate source of request."
            }
          ]
        },
        "properties": [
          {
            "name": "num_channels",
            "value": "3"
          }
        ]
      }
    }
  ]
}

The following commands will generate a summary of the contents of the MLBOM to the console.

mlbomdoc --input test.json 

╭───────────────╮
│ MLBOM Summary │
╰───────────────╯
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Item       ┃ Details                                                      ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ MLBOM File │ test.json                                                    │
│ MLBOM Type │ cyclonedx                                                    │
│ Version    │ 1.5                                                          │
│ Name       │ MLApp                                                        │
│ Creator    │ tool:lib4sbom#0.6.0                                          │
│ Created    │ 2024-01-02T11:02:22Z                                         │
└────────────┴──────────────────────────────────────────────────────────────┘

╭───────────────────────────╮
│ Model Details - resnet-50 │
╰───────────────────────────╯
┏━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Item     ┃ Value      ┃
┡━━━━━━━━━━╇━━━━━━━━━━━━┩
│ Version  │ 1.5        │
│ Supplier │ microsoft  │
│ License  │ Apache-2.0 │
└──────────┴────────────┘
╭──────────────────╮
│ Model Parameters │
╰──────────────────╯
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Parameter           ┃ Value                        ┃
┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ Approach            │ supervised                   │
│ Task                │ classification               │
│ Architecture Family │ Convolutional neural network │
│ Model Architecture  │ ResNet-50                    │
│ Input               │ image                        │
│ Output              │ image class                  │
└─────────────────────┴──────────────────────────────┘
╭───────────────╮
│ Model Dataset │
╰───────────────╯
┏━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Parameter      ┃ Value                                                                                                                                                                                     ┃
┡━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ Type           │ dataset                                                                                                                                                                                   │
│ Contents URL   │ https://huggingface.co/datasets/imagenet-1k                                                                                                                                               │
│ Classification │ public                                                                                                                                                                                    │
│ Sensitive Data │ no personal data                                                                                                                                                                          │
│ Description    │ ILSVRC 2012, commonly known as "ImageNet" is an image dataset organized according to the WordNet hierarchy. Each meaningful concept in WordNet, possibly described by multiple words or   │
│                │ word phrases, is called a "synonym set" or "synset". There are more than 100,000 synsets in WordNet, majority of them are nouns (80,000+). ImageNet aims to provide on average 1000       │
│                │ images to illustrate each synset. Images of each concept are quality-controlled and human-annotated.                                                                                      │
└────────────────┴───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
╭────────────────────╮
│ Dataset Governance │
╰────────────────────╯
┏━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Category ┃ Organization ┃ Contact                  ┃
┡━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ Owner    │ microsoft    │ [email protected]      │
│ Owner    │ microsoft    │ [email protected] │
└──────────┴──────────────┴──────────────────────────┘
╭───────────────────────╮
│ Quantitative Analysis │
╰───────────────────────╯
╭─────────────────────╮
│ Performance Metrics │
╰─────────────────────╯
┏━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━┓
┃ Type ┃ Value ┃ Slice ┃ Lower BOund ┃ Upper Bound ┃
┡━━━━━━╇━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━┩
│ CPU  │ 10%   │       │ 8           │ 12          │
└──────┴───────┴───────┴─────────────┴─────────────┘
╭──────────────────────╮
│ Graphics - Test data │
╰──────────────────────╯
┏━━━━━━┳━━━━━━━━━┓
┃ Name ┃ Content ┃
┡━━━━━━╇━━━━━━━━━┩
│ cat  │ cat.jpg │
│ dog  │ dog.jpg │
└──────┴─────────┘
╭────────────────╮
│ Considerations │
╰────────────────╯
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Category                                     ┃ Value                                          ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ Users                                        │ Researcher                                     │
│ Technical Limitations                        │ To be used in the EU.                          │
│ Technical Limitations                        │ To be used in the UK.                          │
│ Ethical Considerations                       │ User from prohibited location                  │
│ Ethical Considerations - Mitigation Strategy │ Use geolocation to validate source of request. │
└──────────────────────────────────────────────┴────────────────────────────────────────────────┘
╭────────────╮
│ Properties │
╰────────────╯
┏━━━━━━━━━━━━━━┳━━━━━━━┓
┃ Name         ┃ Value ┃
┡━━━━━━━━━━━━━━╇━━━━━━━┩
│ num_channels │ 3     │
└──────────────┴───────┘
                                                                   

Licence

Licenced under the Apache 2.0 Licence.

Limitations

The tool has the following limitations

  • Invalid SBOMs will result in unpredictable results.

Feedback and Contributions

Bugs and feature requests can be made via GitHub Issues.

About

Document generator for ML-BOM (ML Bill of Materials)

Topics

Resources

License

Security policy

Stars

Watchers

Forks

Sponsor this project

 

Packages

No packages published

Languages