Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add array_dot_product / list_dot_product function #12476

Closed
wants to merge 4 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 2 additions & 31 deletions datafusion/functions-nested/src/distance.rs
Original file line number Diff line number Diff line change
Expand Up @@ -17,17 +17,14 @@

//! [ScalarUDFImpl] definitions for array_distance function.

use crate::utils::{downcast_arg, make_scalar_function};
use crate::utils::{convert_to_f64_array, downcast_arg, make_scalar_function};
use arrow_array::{
Array, ArrayRef, Float64Array, LargeListArray, ListArray, OffsetSizeTrait,
};
use arrow_schema::DataType;
use arrow_schema::DataType::{FixedSizeList, Float64, LargeList, List};
use core::any::type_name;
use datafusion_common::cast::{
as_float32_array, as_float64_array, as_generic_list_array, as_int32_array,
as_int64_array,
};
use datafusion_common::cast::as_generic_list_array;
use datafusion_common::utils::coerced_fixed_size_list_to_list;
use datafusion_common::DataFusionError;
use datafusion_common::{exec_err, Result};
Expand Down Expand Up @@ -203,29 +200,3 @@ fn compute_array_distance(

Ok(Some(sum_squares.sqrt()))
}

/// Converts an array of any numeric type to a Float64Array.
fn convert_to_f64_array(array: &ArrayRef) -> Result<Float64Array> {
match array.data_type() {
DataType::Float64 => Ok(as_float64_array(array)?.clone()),
DataType::Float32 => {
let array = as_float32_array(array)?;
let converted: Float64Array =
array.iter().map(|v| v.map(|v| v as f64)).collect();
Ok(converted)
}
DataType::Int64 => {
let array = as_int64_array(array)?;
let converted: Float64Array =
array.iter().map(|v| v.map(|v| v as f64)).collect();
Ok(converted)
}
DataType::Int32 => {
let array = as_int32_array(array)?;
let converted: Float64Array =
array.iter().map(|v| v.map(|v| v as f64)).collect();
Ok(converted)
}
_ => exec_err!("Unsupported array type for conversion to Float64Array"),
}
}
201 changes: 201 additions & 0 deletions datafusion/functions-nested/src/dot_product.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,201 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

//! [ScalarUDFImpl] definitions for dot_product function.

use crate::utils::{convert_to_f64_array, downcast_arg, make_scalar_function};
use arrow_array::{
Array, ArrayRef, Float64Array, LargeListArray, ListArray, OffsetSizeTrait,
};
use arrow_schema::DataType;
use arrow_schema::DataType::{FixedSizeList, Float64, LargeList, List};
use core::any::type_name;
use datafusion_common::cast::as_generic_list_array;
use datafusion_common::utils::coerced_fixed_size_list_to_list;
use datafusion_common::DataFusionError;
use datafusion_common::{exec_err, Result};
use datafusion_expr::{ColumnarValue, ScalarUDFImpl, Signature, Volatility};
use std::any::Any;
use std::sync::Arc;

make_udf_expr_and_func!(
ArrayDotProduct,
array_dot_product,
array,
"returns the dot product between two numeric arrays.",
array_dot_product_udf
);

#[derive(Debug)]
pub(super) struct ArrayDotProduct {
signature: Signature,
aliases: Vec<String>,
}

impl ArrayDotProduct {
pub fn new() -> Self {
Self {
signature: Signature::user_defined(Volatility::Immutable),
aliases: vec!["list_dot_product".to_string()],
}
}
}

impl ScalarUDFImpl for ArrayDotProduct {
fn as_any(&self) -> &dyn Any {
self
}

fn name(&self) -> &str {
"array_dot_product"
}

fn signature(&self) -> &Signature {
&self.signature
}

fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
match arg_types[0] {
List(_) | LargeList(_) | FixedSizeList(_, _) => Ok(Float64),
_ => exec_err!("The array_dot_product function can only accept List/LargeList/FixedSizeList."),
}
}

fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
if arg_types.len() != 2 {
return exec_err!("array_dot_product expects exactly two arguments");
}
let mut result = Vec::new();
for arg_type in arg_types {
match arg_type {
List(_) | LargeList(_) | FixedSizeList(_, _) => result.push(coerced_fixed_size_list_to_list(arg_type)),
_ => return exec_err!("The array_dot_product function can only accept List/LargeList/FixedSizeList."),
}
}

Ok(result)
}

fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
make_scalar_function(array_dot_product_inner)(args)
}

fn aliases(&self) -> &[String] {
&self.aliases
}
}

pub fn array_dot_product_inner(args: &[ArrayRef]) -> Result<ArrayRef> {
if args.len() != 2 {
return exec_err!("array_dot_product expects exactly two arguments");
}

match (&args[0].data_type(), &args[1].data_type()) {
(List(_), List(_)) => general_array_dot_product::<i32>(args),
(LargeList(_), LargeList(_)) => general_array_dot_product::<i64>(args),
(array_type1, array_type2) => {
exec_err!("array_dot_product does not support types '{array_type1:?}' and '{array_type2:?}'")
}
}
}

fn general_array_dot_product<O: OffsetSizeTrait>(
arrays: &[ArrayRef],
) -> Result<ArrayRef> {
let list_array1 = as_generic_list_array::<O>(&arrays[0])?;
let list_array2 = as_generic_list_array::<O>(&arrays[1])?;

let result = list_array1
.iter()
.zip(list_array2.iter())
.map(|(arr1, arr2)| compute_array_dot_product(arr1, arr2))
.collect::<Result<Float64Array>>()?;

Ok(Arc::new(result) as ArrayRef)
}

/// Computes the dot product between two arrays
fn compute_array_dot_product(
arr1: Option<ArrayRef>,
arr2: Option<ArrayRef>,
) -> Result<Option<f64>> {
let value1 = match arr1 {
Some(arr) => arr,
None => return Ok(None),
};
let value2 = match arr2 {
Some(arr) => arr,
None => return Ok(None),
};

let mut value1 = value1;
let mut value2 = value2;

loop {
match value1.data_type() {
List(_) => {
if downcast_arg!(value1, ListArray).null_count() > 0 {
return Ok(None);
}
value1 = downcast_arg!(value1, ListArray).value(0);
}
LargeList(_) => {
if downcast_arg!(value1, LargeListArray).null_count() > 0 {
return Ok(None);
}
value1 = downcast_arg!(value1, LargeListArray).value(0);
}
_ => break,
}

match value2.data_type() {
List(_) => {
if downcast_arg!(value2, ListArray).null_count() > 0 {
return Ok(None);
}
value2 = downcast_arg!(value2, ListArray).value(0);
}
LargeList(_) => {
if downcast_arg!(value2, LargeListArray).null_count() > 0 {
return Ok(None);
}
value2 = downcast_arg!(value2, LargeListArray).value(0);
}
_ => break,
}
}

// Check for NULL values inside the arrays
if value1.null_count() != 0 || value2.null_count() != 0 {
return Ok(None);
}

let values1 = convert_to_f64_array(&value1)?;
let values2 = convert_to_f64_array(&value2)?;

if values1.len() != values2.len() {
return exec_err!("Both arrays must have the same length");
}

let sum_products: f64 = values1
.iter()
.zip(values2.iter())
.map(|(v1, v2)| v1.unwrap_or(0.0) * v2.unwrap_or(0.0))
.sum();

Ok(Some(sum_products))
}
3 changes: 3 additions & 0 deletions datafusion/functions-nested/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@ pub mod cardinality;
pub mod concat;
pub mod dimension;
pub mod distance;
pub mod dot_product;
pub mod empty;
pub mod except;
pub mod expr_ext;
Expand Down Expand Up @@ -77,6 +78,7 @@ pub mod expr_fn {
pub use super::dimension::array_dims;
pub use super::dimension::array_ndims;
pub use super::distance::array_distance;
pub use super::dot_product::array_dot_product;
pub use super::empty::array_empty;
pub use super::except::array_except;
pub use super::extract::array_any_value;
Expand Down Expand Up @@ -137,6 +139,7 @@ pub fn all_default_nested_functions() -> Vec<Arc<ScalarUDF>> {
empty::array_empty_udf(),
length::array_length_udf(),
distance::array_distance_udf(),
dot_product::array_dot_product_udf(),
flatten::flatten_udf(),
sort::array_sort_udf(),
repeat::array_repeat_udf(),
Expand Down
38 changes: 33 additions & 5 deletions datafusion/functions-nested/src/utils.rs
Original file line number Diff line number Diff line change
Expand Up @@ -22,16 +22,18 @@ use std::sync::Arc;
use arrow::{array::ArrayRef, datatypes::DataType};

use arrow_array::{
Array, BooleanArray, GenericListArray, ListArray, OffsetSizeTrait, Scalar,
UInt32Array,
Array, BooleanArray, Float64Array, GenericListArray, ListArray, OffsetSizeTrait,
Scalar, UInt32Array,
};
use arrow_buffer::OffsetBuffer;
use arrow_schema::{Field, Fields};
use datafusion_common::cast::{as_large_list_array, as_list_array};
use datafusion_common::{exec_err, internal_err, plan_err, Result, ScalarValue};

use core::any::type_name;
use datafusion_common::cast::{
as_float32_array, as_float64_array, as_int32_array, as_int64_array,
as_large_list_array, as_list_array,
};
use datafusion_common::DataFusionError;
use datafusion_common::{exec_err, internal_err, plan_err, Result, ScalarValue};
use datafusion_expr::{ColumnarValue, ScalarFunctionImplementation};

macro_rules! downcast_arg {
Expand Down Expand Up @@ -268,6 +270,32 @@ pub(crate) fn get_map_entry_field(data_type: &DataType) -> Result<&Fields> {
}
}

/// Converts an array of any numeric type to a Float64Array.
pub(crate) fn convert_to_f64_array(array: &ArrayRef) -> Result<Float64Array> {
match array.data_type() {
DataType::Float64 => Ok(as_float64_array(array)?.clone()),
DataType::Float32 => {
let array = as_float32_array(array)?;
let converted: Float64Array =
array.iter().map(|v| v.map(|v| v as f64)).collect();
Ok(converted)
}
DataType::Int64 => {
let array = as_int64_array(array)?;
let converted: Float64Array =
array.iter().map(|v| v.map(|v| v as f64)).collect();
Ok(converted)
}
DataType::Int32 => {
let array = as_int32_array(array)?;
let converted: Float64Array =
array.iter().map(|v| v.map(|v| v as f64)).collect();
Ok(converted)
}
_ => exec_err!("Unsupported array type for conversion to Float64Array"),
}
}

#[cfg(test)]
mod tests {
use super::*;
Expand Down
Loading