Skip to content

Commit

Permalink
upate shape
Browse files Browse the repository at this point in the history
  • Loading branch information
englefly committed Nov 28, 2024
1 parent 955d5a5 commit 2f6a040
Show file tree
Hide file tree
Showing 28 changed files with 49 additions and 49 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,6 @@ PhysicalResultSink
------------------------PhysicalDistribute[DistributionSpecHash]
--------------------------hashAgg[LOCAL]
----------------------------PhysicalProject
------------------------------filter((((i_color IN ('forest', 'lime', 'maroon', 'navy', 'powder', 'sky', 'slate', 'smoke') AND i_units IN ('Bunch', 'Case', 'Dozen', 'Gross', 'Lb', 'Ounce', 'Pallet', 'Pound')) AND (((((((item.i_category = 'Women') AND i_color IN ('forest', 'lime')) AND i_units IN ('Pallet', 'Pound')) AND i_size IN ('economy', 'small')) OR ((((item.i_category = 'Women') AND i_color IN ('navy', 'slate')) AND i_units IN ('Bunch', 'Gross')) AND i_size IN ('extra large', 'petite'))) OR ((((item.i_category = 'Men') AND i_color IN ('powder', 'sky')) AND i_units IN ('Dozen', 'Lb')) AND i_size IN ('N/A', 'large'))) OR ((((item.i_category = 'Men') AND i_color IN ('maroon', 'smoke')) AND i_units IN ('Case', 'Ounce')) AND i_size IN ('economy', 'small')))) OR ((i_color IN ('aquamarine', 'dark', 'firebrick', 'frosted', 'papaya', 'peach', 'plum', 'sienna') AND i_units IN ('Box', 'Bundle', 'Carton', 'Cup', 'Dram', 'Each', 'Tbl', 'Ton')) AND (((((((item.i_category = 'Women') AND i_color IN ('aquamarine', 'dark')) AND i_units IN ('Tbl', 'Ton')) AND i_size IN ('economy', 'small')) OR ((((item.i_category = 'Women') AND i_color IN ('frosted', 'plum')) AND i_units IN ('Box', 'Dram')) AND i_size IN ('extra large', 'petite'))) OR ((((item.i_category = 'Men') AND i_color IN ('papaya', 'peach')) AND i_units IN ('Bundle', 'Carton')) AND i_size IN ('N/A', 'large'))) OR ((((item.i_category = 'Men') AND i_color IN ('firebrick', 'sienna')) AND i_units IN ('Cup', 'Each')) AND i_size IN ('economy', 'small'))))) and i_category IN ('Men', 'Women') and i_size IN ('N/A', 'economy', 'extra large', 'large', 'petite', 'small'))
------------------------------filter(OR[AND[i_color IN ('forest', 'lime', 'maroon', 'navy', 'powder', 'sky', 'slate', 'smoke'),i_units IN ('Bunch', 'Case', 'Dozen', 'Gross', 'Lb', 'Ounce', 'Pallet', 'Pound'),OR[AND[(item.i_category = 'Women'),i_color IN ('forest', 'lime'),i_units IN ('Pallet', 'Pound'),i_size IN ('economy', 'small')],AND[(item.i_category = 'Women'),i_color IN ('navy', 'slate'),i_units IN ('Bunch', 'Gross'),i_size IN ('extra large', 'petite')],AND[(item.i_category = 'Men'),i_color IN ('powder', 'sky'),i_units IN ('Dozen', 'Lb'),i_size IN ('N/A', 'large')],AND[(item.i_category = 'Men'),i_color IN ('maroon', 'smoke'),i_units IN ('Case', 'Ounce'),i_size IN ('economy', 'small')]]],AND[i_color IN ('aquamarine', 'dark', 'firebrick', 'frosted', 'papaya', 'peach', 'plum', 'sienna'),i_units IN ('Box', 'Bundle', 'Carton', 'Cup', 'Dram', 'Each', 'Tbl', 'Ton'),OR[AND[(item.i_category = 'Women'),i_color IN ('aquamarine', 'dark'),i_units IN ('Tbl', 'Ton'),i_size IN ('economy', 'small')],AND[(item.i_category = 'Women'),i_color IN ('frosted', 'plum'),i_units IN ('Box', 'Dram'),i_size IN ('extra large', 'petite')],AND[(item.i_category = 'Men'),i_color IN ('papaya', 'peach'),i_units IN ('Bundle', 'Carton'),i_size IN ('N/A', 'large')],AND[(item.i_category = 'Men'),i_color IN ('firebrick', 'sienna'),i_units IN ('Cup', 'Each'),i_size IN ('economy', 'small')]]]] and i_category IN ('Men', 'Women') and i_size IN ('N/A', 'economy', 'extra large', 'large', 'petite', 'small'))
--------------------------------PhysicalOlapScan[item]

Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ PhysicalCteAnchor ( cteId=CTEId#0 )
------------------------------------PhysicalProject
--------------------------------------PhysicalOlapScan[store_sales] apply RFs: RF0 RF1 RF2
------------------------------------PhysicalProject
--------------------------------------filter((((date_dim.d_year = 2000) OR ((date_dim.d_year = 1999) AND (date_dim.d_moy = 12))) OR ((date_dim.d_year = 2001) AND (date_dim.d_moy = 1))) and d_year IN (1999, 2000, 2001))
--------------------------------------filter(OR[(date_dim.d_year = 2000),AND[(date_dim.d_year = 1999),(date_dim.d_moy = 12)],AND[(date_dim.d_year = 2001),(date_dim.d_moy = 1)]] and d_year IN (1999, 2000, 2001))
----------------------------------------PhysicalOlapScan[date_dim]
--------------------------------PhysicalProject
----------------------------------PhysicalOlapScan[store]
Expand Down
16 changes: 8 additions & 8 deletions regression-test/data/nereids_hint_tpcds_p0/shape/query88.out
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ PhysicalResultSink
--------------------------------------filter((time_dim.t_hour = 8) and (time_dim.t_minute >= 30))
----------------------------------------PhysicalOlapScan[time_dim]
--------------------------------PhysicalProject
----------------------------------filter(((((household_demographics.hd_dep_count = 0) AND (household_demographics.hd_vehicle_count <= 2)) OR ((household_demographics.hd_dep_count = -1) AND (household_demographics.hd_vehicle_count <= 1))) OR ((household_demographics.hd_dep_count = 3) AND (household_demographics.hd_vehicle_count <= 5))) and hd_dep_count IN (-1, 0, 3))
----------------------------------filter(OR[AND[(household_demographics.hd_dep_count = 0),(household_demographics.hd_vehicle_count <= 2)],AND[(household_demographics.hd_dep_count = -1),(household_demographics.hd_vehicle_count <= 1)],AND[(household_demographics.hd_dep_count = 3),(household_demographics.hd_vehicle_count <= 5)]] and hd_dep_count IN (-1, 0, 3))
------------------------------------PhysicalOlapScan[household_demographics]
----------------------------PhysicalProject
------------------------------filter((store.s_store_name = 'ese'))
Expand All @@ -45,7 +45,7 @@ PhysicalResultSink
--------------------------------------filter((time_dim.t_hour = 9) and (time_dim.t_minute < 30))
----------------------------------------PhysicalOlapScan[time_dim]
--------------------------------PhysicalProject
----------------------------------filter(((((household_demographics.hd_dep_count = 0) AND (household_demographics.hd_vehicle_count <= 2)) OR ((household_demographics.hd_dep_count = -1) AND (household_demographics.hd_vehicle_count <= 1))) OR ((household_demographics.hd_dep_count = 3) AND (household_demographics.hd_vehicle_count <= 5))) and hd_dep_count IN (-1, 0, 3))
----------------------------------filter(OR[AND[(household_demographics.hd_dep_count = 0),(household_demographics.hd_vehicle_count <= 2)],AND[(household_demographics.hd_dep_count = -1),(household_demographics.hd_vehicle_count <= 1)],AND[(household_demographics.hd_dep_count = 3),(household_demographics.hd_vehicle_count <= 5)]] and hd_dep_count IN (-1, 0, 3))
------------------------------------PhysicalOlapScan[household_demographics]
----------------------------PhysicalProject
------------------------------filter((store.s_store_name = 'ese'))
Expand All @@ -66,7 +66,7 @@ PhysicalResultSink
------------------------------------filter((time_dim.t_hour = 9) and (time_dim.t_minute >= 30))
--------------------------------------PhysicalOlapScan[time_dim]
------------------------------PhysicalProject
--------------------------------filter(((((household_demographics.hd_dep_count = 0) AND (household_demographics.hd_vehicle_count <= 2)) OR ((household_demographics.hd_dep_count = -1) AND (household_demographics.hd_vehicle_count <= 1))) OR ((household_demographics.hd_dep_count = 3) AND (household_demographics.hd_vehicle_count <= 5))) and hd_dep_count IN (-1, 0, 3))
--------------------------------filter(OR[AND[(household_demographics.hd_dep_count = 0),(household_demographics.hd_vehicle_count <= 2)],AND[(household_demographics.hd_dep_count = -1),(household_demographics.hd_vehicle_count <= 1)],AND[(household_demographics.hd_dep_count = 3),(household_demographics.hd_vehicle_count <= 5)]] and hd_dep_count IN (-1, 0, 3))
----------------------------------PhysicalOlapScan[household_demographics]
--------------------------PhysicalProject
----------------------------filter((store.s_store_name = 'ese'))
Expand All @@ -87,7 +87,7 @@ PhysicalResultSink
----------------------------------filter((time_dim.t_hour = 10) and (time_dim.t_minute < 30))
------------------------------------PhysicalOlapScan[time_dim]
----------------------------PhysicalProject
------------------------------filter(((((household_demographics.hd_dep_count = 0) AND (household_demographics.hd_vehicle_count <= 2)) OR ((household_demographics.hd_dep_count = -1) AND (household_demographics.hd_vehicle_count <= 1))) OR ((household_demographics.hd_dep_count = 3) AND (household_demographics.hd_vehicle_count <= 5))) and hd_dep_count IN (-1, 0, 3))
------------------------------filter(OR[AND[(household_demographics.hd_dep_count = 0),(household_demographics.hd_vehicle_count <= 2)],AND[(household_demographics.hd_dep_count = -1),(household_demographics.hd_vehicle_count <= 1)],AND[(household_demographics.hd_dep_count = 3),(household_demographics.hd_vehicle_count <= 5)]] and hd_dep_count IN (-1, 0, 3))
--------------------------------PhysicalOlapScan[household_demographics]
------------------------PhysicalProject
--------------------------filter((store.s_store_name = 'ese'))
Expand All @@ -108,7 +108,7 @@ PhysicalResultSink
--------------------------------filter((time_dim.t_hour = 10) and (time_dim.t_minute >= 30))
----------------------------------PhysicalOlapScan[time_dim]
--------------------------PhysicalProject
----------------------------filter(((((household_demographics.hd_dep_count = 0) AND (household_demographics.hd_vehicle_count <= 2)) OR ((household_demographics.hd_dep_count = -1) AND (household_demographics.hd_vehicle_count <= 1))) OR ((household_demographics.hd_dep_count = 3) AND (household_demographics.hd_vehicle_count <= 5))) and hd_dep_count IN (-1, 0, 3))
----------------------------filter(OR[AND[(household_demographics.hd_dep_count = 0),(household_demographics.hd_vehicle_count <= 2)],AND[(household_demographics.hd_dep_count = -1),(household_demographics.hd_vehicle_count <= 1)],AND[(household_demographics.hd_dep_count = 3),(household_demographics.hd_vehicle_count <= 5)]] and hd_dep_count IN (-1, 0, 3))
------------------------------PhysicalOlapScan[household_demographics]
----------------------PhysicalProject
------------------------filter((store.s_store_name = 'ese'))
Expand All @@ -129,7 +129,7 @@ PhysicalResultSink
------------------------------filter((time_dim.t_hour = 11) and (time_dim.t_minute < 30))
--------------------------------PhysicalOlapScan[time_dim]
------------------------PhysicalProject
--------------------------filter(((((household_demographics.hd_dep_count = 0) AND (household_demographics.hd_vehicle_count <= 2)) OR ((household_demographics.hd_dep_count = -1) AND (household_demographics.hd_vehicle_count <= 1))) OR ((household_demographics.hd_dep_count = 3) AND (household_demographics.hd_vehicle_count <= 5))) and hd_dep_count IN (-1, 0, 3))
--------------------------filter(OR[AND[(household_demographics.hd_dep_count = 0),(household_demographics.hd_vehicle_count <= 2)],AND[(household_demographics.hd_dep_count = -1),(household_demographics.hd_vehicle_count <= 1)],AND[(household_demographics.hd_dep_count = 3),(household_demographics.hd_vehicle_count <= 5)]] and hd_dep_count IN (-1, 0, 3))
----------------------------PhysicalOlapScan[household_demographics]
--------------------PhysicalProject
----------------------filter((store.s_store_name = 'ese'))
Expand All @@ -150,7 +150,7 @@ PhysicalResultSink
----------------------------filter((time_dim.t_hour = 11) and (time_dim.t_minute >= 30))
------------------------------PhysicalOlapScan[time_dim]
----------------------PhysicalProject
------------------------filter(((((household_demographics.hd_dep_count = 0) AND (household_demographics.hd_vehicle_count <= 2)) OR ((household_demographics.hd_dep_count = -1) AND (household_demographics.hd_vehicle_count <= 1))) OR ((household_demographics.hd_dep_count = 3) AND (household_demographics.hd_vehicle_count <= 5))) and hd_dep_count IN (-1, 0, 3))
------------------------filter(OR[AND[(household_demographics.hd_dep_count = 0),(household_demographics.hd_vehicle_count <= 2)],AND[(household_demographics.hd_dep_count = -1),(household_demographics.hd_vehicle_count <= 1)],AND[(household_demographics.hd_dep_count = 3),(household_demographics.hd_vehicle_count <= 5)]] and hd_dep_count IN (-1, 0, 3))
--------------------------PhysicalOlapScan[household_demographics]
------------------PhysicalProject
--------------------filter((store.s_store_name = 'ese'))
Expand All @@ -171,7 +171,7 @@ PhysicalResultSink
--------------------------filter((time_dim.t_hour = 12) and (time_dim.t_minute < 30))
----------------------------PhysicalOlapScan[time_dim]
--------------------PhysicalProject
----------------------filter(((((household_demographics.hd_dep_count = 0) AND (household_demographics.hd_vehicle_count <= 2)) OR ((household_demographics.hd_dep_count = -1) AND (household_demographics.hd_vehicle_count <= 1))) OR ((household_demographics.hd_dep_count = 3) AND (household_demographics.hd_vehicle_count <= 5))) and hd_dep_count IN (-1, 0, 3))
----------------------filter(OR[AND[(household_demographics.hd_dep_count = 0),(household_demographics.hd_vehicle_count <= 2)],AND[(household_demographics.hd_dep_count = -1),(household_demographics.hd_vehicle_count <= 1)],AND[(household_demographics.hd_dep_count = 3),(household_demographics.hd_vehicle_count <= 5)]] and hd_dep_count IN (-1, 0, 3))
------------------------PhysicalOlapScan[household_demographics]
----------------PhysicalProject
------------------filter((store.s_store_name = 'ese'))
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,6 @@ PhysicalResultSink
------------------------PhysicalDistribute[DistributionSpecHash]
--------------------------hashAgg[LOCAL]
----------------------------PhysicalProject
------------------------------filter((((i_color IN ('forest', 'lime', 'maroon', 'navy', 'powder', 'sky', 'slate', 'smoke') AND i_units IN ('Bunch', 'Case', 'Dozen', 'Gross', 'Lb', 'Ounce', 'Pallet', 'Pound')) AND (((((((item.i_category = 'Women') AND i_color IN ('forest', 'lime')) AND i_units IN ('Pallet', 'Pound')) AND i_size IN ('economy', 'small')) OR ((((item.i_category = 'Women') AND i_color IN ('navy', 'slate')) AND i_units IN ('Bunch', 'Gross')) AND i_size IN ('extra large', 'petite'))) OR ((((item.i_category = 'Men') AND i_color IN ('powder', 'sky')) AND i_units IN ('Dozen', 'Lb')) AND i_size IN ('N/A', 'large'))) OR ((((item.i_category = 'Men') AND i_color IN ('maroon', 'smoke')) AND i_units IN ('Case', 'Ounce')) AND i_size IN ('economy', 'small')))) OR ((i_color IN ('aquamarine', 'dark', 'firebrick', 'frosted', 'papaya', 'peach', 'plum', 'sienna') AND i_units IN ('Box', 'Bundle', 'Carton', 'Cup', 'Dram', 'Each', 'Tbl', 'Ton')) AND (((((((item.i_category = 'Women') AND i_color IN ('aquamarine', 'dark')) AND i_units IN ('Tbl', 'Ton')) AND i_size IN ('economy', 'small')) OR ((((item.i_category = 'Women') AND i_color IN ('frosted', 'plum')) AND i_units IN ('Box', 'Dram')) AND i_size IN ('extra large', 'petite'))) OR ((((item.i_category = 'Men') AND i_color IN ('papaya', 'peach')) AND i_units IN ('Bundle', 'Carton')) AND i_size IN ('N/A', 'large'))) OR ((((item.i_category = 'Men') AND i_color IN ('firebrick', 'sienna')) AND i_units IN ('Cup', 'Each')) AND i_size IN ('economy', 'small'))))) and i_category IN ('Men', 'Women') and i_size IN ('N/A', 'economy', 'extra large', 'large', 'petite', 'small'))
------------------------------filter(OR[AND[i_color IN ('forest', 'lime', 'maroon', 'navy', 'powder', 'sky', 'slate', 'smoke'),i_units IN ('Bunch', 'Case', 'Dozen', 'Gross', 'Lb', 'Ounce', 'Pallet', 'Pound'),OR[AND[(item.i_category = 'Women'),i_color IN ('forest', 'lime'),i_units IN ('Pallet', 'Pound'),i_size IN ('economy', 'small')],AND[(item.i_category = 'Women'),i_color IN ('navy', 'slate'),i_units IN ('Bunch', 'Gross'),i_size IN ('extra large', 'petite')],AND[(item.i_category = 'Men'),i_color IN ('powder', 'sky'),i_units IN ('Dozen', 'Lb'),i_size IN ('N/A', 'large')],AND[(item.i_category = 'Men'),i_color IN ('maroon', 'smoke'),i_units IN ('Case', 'Ounce'),i_size IN ('economy', 'small')]]],AND[i_color IN ('aquamarine', 'dark', 'firebrick', 'frosted', 'papaya', 'peach', 'plum', 'sienna'),i_units IN ('Box', 'Bundle', 'Carton', 'Cup', 'Dram', 'Each', 'Tbl', 'Ton'),OR[AND[(item.i_category = 'Women'),i_color IN ('aquamarine', 'dark'),i_units IN ('Tbl', 'Ton'),i_size IN ('economy', 'small')],AND[(item.i_category = 'Women'),i_color IN ('frosted', 'plum'),i_units IN ('Box', 'Dram'),i_size IN ('extra large', 'petite')],AND[(item.i_category = 'Men'),i_color IN ('papaya', 'peach'),i_units IN ('Bundle', 'Carton'),i_size IN ('N/A', 'large')],AND[(item.i_category = 'Men'),i_color IN ('firebrick', 'sienna'),i_units IN ('Cup', 'Each'),i_size IN ('economy', 'small')]]]] and i_category IN ('Men', 'Women') and i_size IN ('N/A', 'economy', 'extra large', 'large', 'petite', 'small'))
--------------------------------PhysicalOlapScan[item]

Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ PhysicalCteAnchor ( cteId=CTEId#0 )
------------------------------------PhysicalProject
--------------------------------------PhysicalOlapScan[store_sales] apply RFs: RF0 RF1 RF2
------------------------------------PhysicalProject
--------------------------------------filter((((date_dim.d_year = 2000) OR ((date_dim.d_year = 1999) AND (date_dim.d_moy = 12))) OR ((date_dim.d_year = 2001) AND (date_dim.d_moy = 1))) and d_year IN (1999, 2000, 2001))
--------------------------------------filter(OR[(date_dim.d_year = 2000),AND[(date_dim.d_year = 1999),(date_dim.d_moy = 12)],AND[(date_dim.d_year = 2001),(date_dim.d_moy = 1)]] and d_year IN (1999, 2000, 2001))
----------------------------------------PhysicalOlapScan[date_dim]
--------------------------------PhysicalProject
----------------------------------PhysicalOlapScan[store]
Expand Down
Loading

0 comments on commit 2f6a040

Please sign in to comment.