Skip to content

Commit

Permalink
[Contrib] Implement NDArray cache update (#17029)
Browse files Browse the repository at this point in the history
  • Loading branch information
vinx13 authored May 27, 2024
1 parent 7359313 commit b598f28
Show file tree
Hide file tree
Showing 2 changed files with 94 additions and 7 deletions.
76 changes: 69 additions & 7 deletions python/tvm/contrib/tvmjs.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@
# pylint: disable=unused-import
import sys
from types import GeneratorType
from typing import Iterator, Mapping, Tuple, Union
from typing import Any, Iterator, Mapping, Optional, Set, Tuple, Union

import numpy as np

Expand Down Expand Up @@ -73,16 +73,31 @@ def _calculate_md5(filename):
class NDArrayCacheShardingManager:
"""Internal helper to shard ndarrays."""

def __init__(self, cache_dir: str, prefix: str, shard_cap_nbytes: int):
def __init__(
self,
cache_dir: str,
prefix: str,
shard_cap_nbytes: int,
initial_shard_records: Optional[Mapping[str, Any]] = None,
):
self.cache_dir = cache_dir
self.prefix = prefix
self.curr_records = []
self.curr_data = bytearray()
self.shard_records = []
self.shard_cap_nbytes = shard_cap_nbytes
self.counter = 0
self.name_to_record: Mapping[str, Tuple[int, Mapping[str, Any]]] = {}
self.updated_shards: Set[int] = set()

def append(self, data, name, shape, dtype, encode_format):
if initial_shard_records is not None:
self.shard_records = initial_shard_records
self.counter = len(initial_shard_records)
for idx, shard in enumerate(initial_shard_records):
for rec in shard["records"]:
self.name_to_record[rec["name"]] = (idx, rec)

def append_or_update(self, data, name, shape, dtype, encode_format, allow_update: bool = False):
"""Commit a record to the manager.
Parameters
Expand All @@ -101,6 +116,9 @@ def append(self, data, name, shape, dtype, encode_format):
encode_format:
The encode format of the entry
allow_update: bool
If the record already exists, update the record. Otherwise, raise an error.
"""
rec = {
"name": name,
Expand All @@ -109,6 +127,13 @@ def append(self, data, name, shape, dtype, encode_format):
"format": encode_format,
"nbytes": len(data),
}
if name in self.name_to_record:
if not allow_update:
raise ValueError(f"Duplicate name {name} found in the cache.")
self.update_single_record(rec, data)
return

self.name_to_record[name] = (self.counter, rec)

if self.pending_nbytes + len(data) >= self.shard_cap_nbytes:
if len(data) * 2 >= self.shard_cap_nbytes:
Expand All @@ -121,6 +146,20 @@ def append(self, data, name, shape, dtype, encode_format):
self.curr_records.append(rec)
self.curr_data += data

def update_single_record(self, rec, data):
"""Update a single record in a shard file."""
name = rec["name"]
idx, old_rec = self.name_to_record[name]
if old_rec["nbytes"] != rec["nbytes"]:
raise ValueError(f"Cannot update record {name}, size mismatch.")
data_path = self.shard_records[idx]["dataPath"]
full_path = os.path.join(self.cache_dir, data_path)
with open(full_path, "r+b") as outfile:
outfile.seek(old_rec["byteOffset"])
outfile.write(data)
self.name_to_record[name] = (idx, rec)
self.updated_shards.add(idx)

def commit(self):
"""Commit a record"""
if self.pending_nbytes != 0:
Expand All @@ -131,6 +170,9 @@ def commit(self):
def finish(self):
"""Finish building and return shard records."""
self.commit()
for idx in self.updated_shards:
full_path = os.path.join(self.cache_dir, self.shard_records[idx]["dataPath"])
self.shard_records[idx]["md5sum"] = _calculate_md5(full_path)
return self.shard_records

def _commit_internal(self, data, records):
Expand Down Expand Up @@ -165,6 +207,7 @@ def dump_ndarray_cache(
meta_data=None,
shard_cap_mb=32,
show_progress: bool = True,
update_if_exists: bool = False,
):
"""Dump parameters to NDArray cache.
Expand All @@ -191,6 +234,10 @@ def dump_ndarray_cache(
show_progress: bool
A boolean indicating if to show the dump progress.
update_if_exists: bool
If the cache already exists, update the cache. When set to False, it will overwrite the
existing files.
"""
if encode_format not in ("raw", "f32-to-bf16"):
raise ValueError(f"Invalie encode_format {encode_format}")
Expand All @@ -209,7 +256,17 @@ def dump_ndarray_cache(
print("Start storing to cache %s" % cache_dir)
shard_cap_nbytes = shard_cap_mb * (1 << 20)

shard_manager = NDArrayCacheShardingManager(cache_dir, "params_shard", shard_cap_nbytes)
nd_cache_json = os.path.join(cache_dir, "ndarray-cache.json")
if update_if_exists and os.path.exists(nd_cache_json):
with open(nd_cache_json, "r") as infile:
old_data = json.load(infile)
if meta_data is None:
meta_data = old_data["metadata"]
records = old_data["records"]

shard_manager = NDArrayCacheShardingManager(
cache_dir, "params_shard", shard_cap_nbytes, initial_shard_records=records
)

param_generator = params.items() if not from_generator else params
for k, origin_v in param_generator:
Expand All @@ -229,7 +286,14 @@ def dump_ndarray_cache(
else:
data = v.tobytes()

shard_manager.append(data, name=k, shape=shape, dtype=dtype, encode_format=encode_format)
shard_manager.append_or_update(
data,
name=k,
shape=shape,
dtype=dtype,
encode_format=encode_format,
allow_update=update_if_exists,
)

counter += 1
if show_progress:
Expand All @@ -241,8 +305,6 @@ def dump_ndarray_cache(
records = shard_manager.finish()
meta_data = {} if meta_data is None else meta_data if not callable(meta_data) else meta_data()

nd_cache_json = os.path.join(cache_dir, "ndarray-cache.json")

with open(nd_cache_json, "w") as outfile:
json.dump({"metadata": meta_data, "records": records}, outfile, indent=4)
print(
Expand Down
25 changes: 25 additions & 0 deletions tests/python/relax/test_runtime_builtin.py
Original file line number Diff line number Diff line change
Expand Up @@ -188,6 +188,31 @@ def test_ndarray_cache():
np.testing.assert_allclose(v.numpy(), v_np, atol=1e-6, rtol=1e-6)


def test_ndarray_cache_update():
fload = tvm.get_global_func("vm.builtin.ndarray_cache.load")
fget_params = tvm.get_global_func("vm.builtin.param_array_from_cache")

param_dict = {
"x_0": np.array([1, 2, 3], dtype="int32"),
"x_1": np.random.uniform(size=[10, 20]).astype("float32"),
}

temp = utils.tempdir()
tvmjs.dump_ndarray_cache(param_dict, temp.path, encode_format="f32-to-bf16")
param_dict["x_1"] = np.random.uniform(size=[10, 20]).astype("float32")
param_dict["x_2"] = np.random.uniform(size=[10]).astype("float32")
tvmjs.dump_ndarray_cache(
param_dict, temp.path, encode_format="f32-to-bf16", update_if_exists=True
)
fload(str(temp.path), tvm.cpu().device_type, 0)
res = fget_params("x", -1)
for i, v in enumerate(res):
v_np = param_dict[f"x_{i}"]
if v_np.dtype == "float32":
v_np = tvmjs._convert_bf16_to_f32(tvmjs._convert_f32_to_bf16(v_np))
np.testing.assert_allclose(v.numpy(), v_np, atol=1e-6, rtol=1e-6)


def test_attention_kv_cache_window_override():
fcreate = tvm.get_global_func("vm.builtin.attention_kv_cache_create")
foverride = tvm.get_global_func("vm.builtin.attention_kv_cache_window_override")
Expand Down

0 comments on commit b598f28

Please sign in to comment.