Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ONNX][BugFix] Support If body with free variable from graph input #15602

Merged
merged 3 commits into from
Aug 26, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 7 additions & 2 deletions python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -4510,14 +4510,19 @@ def _impl_v1(cls, inputs, attr, params):
# Add constants from both branches to parent graph.
graph_scope._params.update(then_graph._params)
graph_scope._nodes.update(then_graph._nodes)
graph_scope._params.update(else_graph._params)
graph_scope._nodes.update(else_graph._nodes)

then_free_vars = analysis.free_vars(then_expr)
for var in then_free_vars:
graph_scope._nodes.update({var.name_hint: var})
graph_scope._params.update(else_graph._params)
graph_scope._nodes.update(else_graph._nodes)
if var.name_hint in graph_scope._inputs:
graph_scope._inputs.update({var.name_hint: var})
else_free_vars = analysis.free_vars(else_expr)
for var in else_free_vars:
graph_scope._nodes.update({var.name_hint: var})
if var.name_hint in graph_scope._inputs:
graph_scope._inputs.update({var.name_hint: var})

# Sometimes pytorch to onnx will insert silly if statements that produce dynamic ranks.
# Often these dont contribute anything. If we see a dynamic rank output, try to unify
Expand Down
95 changes: 95 additions & 0 deletions tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -5147,6 +5147,101 @@ def append_constant_nodes(nodes, outputs, expected, name):
verify_if(cond_array=True, num_outputs=2)


@tvm.testing.parametrize_targets
def test_graph_input_use_in_if(target, dev):
"""test_graph_input_use_in_if"""

def verify_if(num_nested, cond):
# return "graph input" if cond is True, else return constant(-1).

input_tensor = helper.make_tensor_value_info("graph_input", TensorProto.FLOAT, [1])
output_tensor = helper.make_tensor_value_info("graph_output", TensorProto.FLOAT, [1])
constant_node = make_constant_node("const_val", TensorProto.FLOAT, [1], [-1])
cond_tensor = helper.make_tensor_value_info("cond", TensorProto.BOOL, [1])
inner_if_node = None
for i in range(num_nested):
identity_node = helper.make_node(
"Identity",
inputs=["const_val"],
outputs=[f"const{i}"],
name=f"depth{i}'th else identity",
)
else_branch = helper.make_graph(
[identity_node],
f"else{i}_body",
inputs=[],
outputs=[helper.make_tensor_value_info(f"const{i}", TensorProto.FLOAT, [1])],
)
out_name = f"if_output{i}" if i != (num_nested - 1) else "graph_output"

if i == 0:
identity_node = helper.make_node(
"Identity",
inputs=["graph_input"],
outputs=[f"input_identity{i}"],
name=f"depth{i}'th then identity",
)
then_branch = helper.make_graph(
[identity_node],
f"then{i}_body",
inputs=[],
outputs=[
helper.make_tensor_value_info(f"input_identity{i}", TensorProto.FLOAT, [1])
],
)
if_node = helper.make_node(
"If",
inputs=["cond"],
outputs=[out_name],
then_branch=then_branch,
else_branch=else_branch,
name=f"depth{i}'s If node",
)
inner_if_node = if_node
else:
then_branch = helper.make_graph(
[inner_if_node],
f"then{i}_body",
inputs=[],
outputs=[
helper.make_tensor_value_info(f"if_output{i-1}", TensorProto.FLOAT, [1])
],
)
if_node = helper.make_node(
"If",
inputs=["cond"],
outputs=[out_name],
then_branch=then_branch,
else_branch=else_branch,
name=f"depth{i}'s If node",
)
inner_if_node = if_node
graph_nodes = [constant_node, inner_if_node]
graph = helper.make_graph(
graph_nodes,
"input_use_in_if_test",
inputs=[input_tensor, cond_tensor],
outputs=[output_tensor],
)
model = helper.make_model(graph, producer_name="input_use_in_if_test")

verify_with_ort_with_inputs(
model,
[np.array([3.0], dtype="float32"), np.array([cond])],
dtype="float32",
use_vm=True,
opset=14,
target=target,
dev=dev,
)

# Confirm that if works with cond as an array or scalar.
verify_if(num_nested=1, cond=True)
verify_if(num_nested=1, cond=False)
verify_if(num_nested=2, cond=True)
verify_if(num_nested=2, cond=False)


@tvm.testing.parametrize_targets
def test_size(target, dev):
"""test_size"""
Expand Down