Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add new network (InceptionNet) #324

Closed
wants to merge 5 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
@@ -1,10 +1,10 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v2.3.0
rev: v4.3.0
hooks:
- id: check-yaml
- repo: https://github.com/psf/black
rev: 22.1.0
rev: 22.6.0
hooks:
- id: black
- repo: https://github.com/pycqa/isort
Expand Down
2 changes: 1 addition & 1 deletion clinicadl/utils/network/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
from .autoencoder.models import AE_Conv4_FC3, AE_Conv5_FC3
from .cnn.models import Conv4_FC3, Conv5_FC3, Stride_Conv5_FC3, resnet18
from .cnn.models import Conv4_FC3, Conv5_FC3, Inception, Stride_Conv5_FC3, resnet18
from .cnn.random import RandomArchitecture
from .vae.vanilla_vae import (
Vanilla3DdenseVAE,
Expand Down
104 changes: 104 additions & 0 deletions clinicadl/utils/network/cnn/inception.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
import math
from typing import Any, Callable, List, Optional, Tuple

import torch
from torch import nn
from torchvision.models.inception import (
BasicConv2d,
InceptionA,
InceptionAux,
InceptionB,
InceptionC,
InceptionD,
InceptionE,
)

inception_urls = {
"Inception_v3": "https://download.pytorch.org/models/inception_v3_google-0cc3c7bd.pth"
}


class InceptionDesigner(nn.Module):
def __init__(
self,
input_size,
InceptionBlocks: Optional[List[Callable[..., nn.Module]]] = None,
num_classes=1000,
aux_logits: bool = True,
dropout: float = 0.5,
) -> None:
super(InceptionDesigner, self).__init__()

if InceptionBlocks is None:
InceptionBlocks = [
BasicConv2d,
InceptionA,
InceptionB,
InceptionC,
InceptionD,
InceptionE,
InceptionAux,
]

self.aux_logits = aux_logits
self.Conv2d_1a_3x3 = BasicConv2d(3, 32, kernel_size=3, stride=2)
self.Conv2d_2a_3x3 = BasicConv2d(32, 32, kernel_size=3)
self.Conv2d_2b_3x3 = BasicConv2d(32, 64, kernel_size=3, padding=1)
self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2)
self.Conv2d_3b_1x1 = BasicConv2d(64, 80, kernel_size=1)
self.Conv2d_4a_3x3 = BasicConv2d(80, 192, kernel_size=3)
self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2)
self.Mixed_5b = InceptionA(192, pool_features=32)
self.Mixed_5c = InceptionA(256, pool_features=64)
self.Mixed_5d = InceptionA(288, pool_features=64)
self.Mixed_6a = InceptionB(288)
self.Mixed_6b = InceptionC(768, channels_7x7=128)
self.Mixed_6c = InceptionC(768, channels_7x7=160)
self.Mixed_6d = InceptionC(768, channels_7x7=160)
self.Mixed_6e = InceptionC(768, channels_7x7=192)
self.AuxLogits: Optional[nn.Module] = None
if aux_logits:
self.AuxLogits = InceptionAux(768, num_classes)
self.Mixed_7a = InceptionD(768)
self.Mixed_7b = InceptionE(1280)
self.Mixed_7c = InceptionE(2048)

input_tensor = self._transform_input(input_size)
out = self.Conv2d_1a_3x3(input_tensor)
out = self.Conv2d_2a_3x3(out)
out = self.Conv2d_2b_3x3(out)
out = self.maxpool1(out)
out = self.Conv2d_3b_1x1(out)
out = self.Conv2d_4a_3x3(out)
out = self.maxpool2(out)
out = self.Mixed_5b(out)
out = self.Mixed_5c(out)
out = self.Mixed_6a(out)
out = self.Mixed_6b(out)
out = self.Mixed_6c(out)
out = self.Mixed_6d(out)
out = self.Mixed_6e(out)
if aux_logits:
out = self.AuxLogits
out = self.Mixed_7a(out)
out = self.Mixed_7b(out)
out = self.Mixed_7c(out)

self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(2048, num_classes)

for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2.0 / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()

def _transform_input(self, x):
if self.transform_input:
x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
x = torch.cat((x_ch0, x_ch1, x_ch2), 1)
return x
50 changes: 50 additions & 0 deletions clinicadl/utils/network/cnn/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
from torch import nn
from torchvision.models.resnet import BasicBlock

from clinicadl.utils.network.cnn.inception import InceptionDesigner, inception_urls
from clinicadl.utils.network.cnn.resnet import ResNetDesigner, model_urls
from clinicadl.utils.network.network_utils import PadMaxPool2d, PadMaxPool3d
from clinicadl.utils.network.sub_network import CNN
Expand Down Expand Up @@ -171,6 +172,55 @@ def __init__(self, input_size, gpu=False, output_size=2, dropout=0.5):
)


class Inception(CNN):

"""
Deep 2D convolutional neural network architecture codenamed Inception,
which was responsible for setting the new state of the art for classification
and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Improved utilization of the computing resources inside the network.
Increasing the depth and width of the network while keeping the computational budget constant.
To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing.

https://arxiv.org/pdf/1512.00567v3.pdf

"""

def __init___(self, input_size=(299, 299, 3), gpu: bool = False):

model = InceptionDesigner(
self, input_size, num_classes=1000, aux_logits=True, dropout=0.5
)
model.load_state_dict(model_zoo.load_url(inception_urls["Inception_v3"]))

convolutions = nn.Sequential(
model.Conv2d_1a_3x3,
model.Conv2d_2a_3x3,
model.Conv2d_2b_3x3,
model.maxpool1,
model.Conv2d_3b_1x1,
model.Conv2d_4a_3x3,
model.maxpool2,
model.Mixed_5b,
model.Mixed_5c,
model.Mixed_5d,
model.Mixed_6a,
model.Mixed_6b,
model.Mixed_6c,
model.Mixed_6d,
model.Mixed_6e,
model.AuxLogits,
model.Mixed_7a,
model.Mixed_7b,
model.Mixed_7c,
model.avgpool,
)

fc = nn.Sequential(model.dropout, model.fc)

super().__init__(convolutions=convolutions, fc=fc, gpu=gpu)


class Stride_Conv5_FC3(CNN):
"""
Reduce the 2D or 3D input image to an array of size output_size.
Expand Down