Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implemented add, mult, inv, sub, div, pow and neg for binary fields and wrote tests for each function #864

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
153 changes: 153 additions & 0 deletions ff/src/fields/bf.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
use num_bigint::BigUint;
use num_traits::{Zero, One};

#[derive( Clone, PartialEq, Eq)]
pub struct BinaryFieldElement {
value: BigUint,
}

impl BinaryFieldElement {
// Constructor to create a new BinaryFieldElement
pub fn new(value: BigUint) -> Self {
BinaryFieldElement { value }
}

// Method for addition in GF(2^k)
pub fn add(&self, other: &Self) -> Self {
// Addition in binary fields is done with XOR
BinaryFieldElement::new(&self.value ^ &other.value)
}

pub fn sub(&self, other: &Self) -> Self {
self.add(other)
}

// Method for multiplication in GF(2^k)
pub fn mul(&self, other: &Self) -> Self {
BinaryFieldElement::new(binmul(self.value.clone(), other.value.clone(), None))
}

// Method for division (multiplication by the inverse)
pub fn div(&self, other: &Self) -> Self {
self.mul(&other.inv()) // Division as multiplication by inverse
}

pub fn neg(&self) -> Self {
self.clone()
}

pub fn pow(&self, exponent: u64) -> Self {
if exponent == 0 {
BinaryFieldElement::new(BigUint::one())
} else if exponent == 1 {
self.clone()
} else if exponent % 2 == 0 {
let half_pow = self.pow(exponent / 2);
half_pow.mul(&half_pow)
} else {
self.mul(&self.pow(exponent - 1))
}
}

// In a binary field GF(2^w) the inverse is a^{-1} = a^{2m-2}
pub fn inv(&self) -> Self {
let bit_len = self.value.bits();
let l = 1 << (bit_len - 1).ilog2() + 1;
return self.pow(2_u64.pow(l) - 2);
}
}

// Binary field multiplication with reduction
fn binmul(v1: BigUint, v2: BigUint, length: Option<usize>) -> BigUint {
if v1.is_zero() || v2.is_zero() {
return BigUint::zero();
}
if v1.is_one() || v2.is_one() {
return v1 * v2;
}

let length = length.unwrap_or_else(|| 1 << (v1.bits().max(v2.bits()) - 1).next_power_of_two());
let halflen = length / 2;
let quarterlen = halflen / 2;
let halfmask = (BigUint::one() << halflen) - BigUint::one();

let l1 = &v1 & &halfmask;
let r1 = &v1 >> halflen;
let l2 = &v2 & &halfmask;
let r2 = &v2 >> halflen;

// Optimized case for (L1, R1) == (0, 1)
if l1.is_zero() && r1 == BigUint::one() {
let out_r = binmul(BigUint::one() << quarterlen, r2.clone(), Some(halflen)) ^ l2.clone();
return r2 ^ (out_r << halflen);
}

// Perform Karatsuba multiplication with three main sub-multiplications
let l1l2 = binmul(l1.clone(), l2.clone(), Some(halflen));
let r1r2 = binmul(r1.clone(), r2.clone(), Some(halflen));
let r1r2_high = binmul(BigUint::one() << quarterlen, r1r2.clone(), Some(halflen));
let z3 = binmul(l1 ^ r1.clone(), l2 ^ r2.clone(), Some(halflen));

l1l2.clone() ^ r1r2.clone() ^ ((z3 ^ l1l2 ^ r1r2 ^ r1r2_high) << halflen)
}



#[cfg(test)]
mod tests {
use super::*;
use num_bigint::ToBigUint;

#[test]
fn add_test() {
let a = BinaryFieldElement::new(1u64.to_biguint().unwrap());
let b = BinaryFieldElement::new(0u64.to_biguint().unwrap());
let c = BinaryFieldElement::new(100u64.to_biguint().unwrap());

// Test cases
assert_eq!(a.add(&b), BinaryFieldElement::new(1u64.to_biguint().unwrap()));
assert_eq!(a.add(&a), BinaryFieldElement::new(0u64.to_biguint().unwrap())); // 1 + 1 in GF(2) should be 0
assert_eq!(a.add(&c), BinaryFieldElement::new(101u64.to_biguint().unwrap())); // 1 + 100 = 101 in binary (XOR)
assert_eq!(b.add(&c), BinaryFieldElement::new(100u64.to_biguint().unwrap())); // 0 + 100 = 100
}

#[test]
fn sub_test() {
let a = BinaryFieldElement::new(1u64.to_biguint().unwrap());
let b = BinaryFieldElement::new(100u64.to_biguint().unwrap());

assert_eq!(a.sub(&b), BinaryFieldElement::new(101u64.to_biguint().unwrap())); // 1 - 100 in GF(2) should be 101 (same as add)
}

#[test]
fn neg_test() {
let a = BinaryFieldElement::new(15u64.to_biguint().unwrap());
assert_eq!(a.neg(), a); // Negation in GF(2) has no effect, so a == -a
}

#[test]
fn multiplication_test() {
let a = BinaryFieldElement::new(7u64.to_biguint().unwrap());
let b = BinaryFieldElement::new(13u64.to_biguint().unwrap());
assert_eq!(a.mul(&b), BinaryFieldElement::new(8u64.to_biguint().unwrap())); // 7 * 13 = 8
}

#[test]
fn exponentiation_test() {
let a = BinaryFieldElement::new(7u64.to_biguint().unwrap());
assert_eq!(a.pow(3), BinaryFieldElement::new(4u64.to_biguint().unwrap())); // 7 ** 3 = 4
}

#[test]
fn inverse_test() {
let a = BinaryFieldElement::new(7u64.to_biguint().unwrap());
assert_eq!(a.inv(), BinaryFieldElement::new(15u64.to_biguint().unwrap())); // Inverse of 7 = 15
}

#[test]
fn division_test() {
let a = BinaryFieldElement::new(7u64.to_biguint().unwrap());
let b = BinaryFieldElement::new(13u64.to_biguint().unwrap());
assert_eq!(a.div(&b), BinaryFieldElement::new(10u64.to_biguint().unwrap())); // 7 / 13 = 10
}
}
Loading