This repository contains an in-depth analysis of RNA-seq data comparing the effects of Cyclosporin A (CsA) and Voclosporin (VOC) treatments against control groups. The study utilizes iPathwayGuide to highlight differentially expressed genes (DEGs), pathway impacts, and biological processes affected by these treatments.
- Analyze significant DEGs in CsA- and VOC-treated samples versus controls.
- Explore disrupted pathways and enriched biological processes using KEGG and GO databases.
- Highlight upstream regulators, diseases, and organ-specific signatures affected by the treatments.
- Compare the systemic and specific effects of CsA and VOC.
Attribute | CsA vs Control | VOC vs Control |
---|---|---|
Treatment | Cyclosporin A (CsA) | Voclosporin (VOC) |
Number of DEGs | 1,492 | 489 |
FDR Threshold | 0.05 | 0.05 |
Genes Measured | Total: 15,359 | Total: 15,359 |
Pathway Name | CsA vs Control (FDR) | VOC vs Control (FDR) |
---|---|---|
Protein Processing in the ER | Significant | Most Significant (2.604e-16) |
Cell Cycle | Most Significant (2.788e-17) | Significant (1.002e-6) |
DNA Replication | 7.860e-9 | 2.099e-6 |
Oocyte Meiosis | 7.882e-4 | N/A |
Base Excision Repair | N/A | 0.011 |
Attribute | CsA vs Control | VOC vs Control |
---|---|---|
Total Significant Terms | 1,134 | 1,024 |
Biological Processes | Chromosome organization, DNA unwinding | Chromosome organization, DNA replication |
Molecular Functions | DNA helicase activity, ATP binding | Unfolded protein binding, ssDNA helicase |
Cellular Components | Chromosomal regions, condensed chromosomes | Endoplasmic reticulum protein complexes |
Attribute | CsA vs Control | VOC vs Control |
---|---|---|
Upstream Regulators | 268 genes, 572 chemicals | 334 genes, 598 chemicals |
Disease Associations | 22 diseases | 35 diseases |
- Differential Gene Expression:
- 1,492 DEGs identified at FDR 0.05.
- Top Pathways:
- Most significant: Cell Cycle (FDR = 2.788e-17).
- Upstream Regulators:
- 268 genes and 572 chemicals identified.
- Differential Gene Expression:
- 489 DEGs identified at FDR 0.05.
- Top Pathways:
- Most significant: Protein Processing in the ER (FDR = 2.604e-16).
- Upstream Regulators:
- 334 genes and 598 chemicals identified.
- Voclosporin (VOC):
- Targets specific pathways, particularly related to protein folding and cellular stress.
- Unique organ- and cell-type-specific findings, including lung-related cell types.
- Cyclosporin A (CsA):
- Broader systemic impacts with significant effects on the cell cycle and oocyte meiosis.
- Data Sources:
- KEGG pathways, Gene Ontology, BioGRID, miRNA databases, and others.
- Analysis Techniques:
- Differential gene expression analysis with hypergeometric distribution.
- Pathway impact analysis combining pORA and pAcc metrics.
- GO term pruning for high specificity.
- Statistical Significance:
- Adjusted p-values via FDR and Bonferroni corrections.
- Volcano Plots: Highlight up- and down-regulated genes.
- Pathway Diagrams: Show pathway perturbation and gene-level changes.
- Bar Plots: Rank DEGs by log fold change.
- Next.js: For dynamic, server-rendered pages and a robust React framework.
- Tailwind CSS: Utility-first styling framework.
- shadcn/ui: Prebuilt UI components.
- Python: For data analysis and processing.
- Flask/FastAPI: For serving data analysis APIs.
- Pandas/NumPy: For data manipulation.
- Matplotlib/Plotly: For generating visualizations programmatically.
- Raw/Processed Data:
- Store raw data under
data/raw/
and processed versions indata/processed/
. - Include metadata about datasets in
data/README.md
.
- Store raw data under
- Pytest: For backend and data processing tests.
- Jest: For testing frontend React components.
- Vercel: For the frontend deployment.
- AWS/Heroku/Render: For the backend deployment.
- Use
notebooks/
for exploratory analysis and visualizations in Python. - Dynamic charts rendered via
chart.tsx
in the frontend.
- Serve processed data via Python APIs, like
pathway_enrichment.py
.
- Tailored components for user interaction with dynamic pathway data.
- Include Python tests for APIs and data processing.
- Clear guidelines in the
README.md
for developers and contributors.
RNAlytics/
βββ .git/
βββ .github/
βββ .wrangler/
β βββ state/
β β βββ v3/
β β β βββ workflows/
βββ app/
β βββ analysis/
β β βββ page.tsx
β βββ api/
β β βββ chord/
β β β βββ route.ts
β β βββ deg-rankings/
β β β βββ route.ts
β β βββ differential-expression/
β β β βββ route.ts
β β βββ pathway/
β β β βββ route.ts
β βββ data/
β β βββ page.tsx
β βββ documentation/
β β βββ page.tsx
β βββ fonts/
β β βββ GeistMonoVF.woff
β β βββ GeistVF.woff
β βββ utils/
β β βββ chart_helpers.js
β β βββ data_loader.js
β βββ visualizations/
β β βββ layout.tsx
β β βββ page.tsx
β βββ favicon.ico
β βββ globals.css
β βββ layout.tsx
β βββ page.tsx
β βββ providers.tsx
βββ components/
β βββ ui/
β β βββ accordion.tsx
β β βββ alert-dialog.tsx
β β βββ alert.tsx
β β βββ aspect-ratio.tsx
β β βββ avatar.tsx
β β βββ badge.tsx
β β βββ button.tsx
β β βββ calendar.tsx
β β βββ card.tsx
β β βββ chart.tsx
β β βββ checkbox.tsx
β β βββ collapsible.tsx
β β βββ command.tsx
β β βββ context-menu.tsx
β β βββ dialog.tsx
β β βββ dropdown-menu.tsx
β β βββ hover-card.tsx
β β βββ input.tsx
β β βββ label.tsx
β β βββ menubar.tsx
β β βββ navigation-menu.tsx
β β βββ popover.tsx
β β βββ progress.tsx
β β βββ radio-group.tsx
β β βββ scroll-area.tsx
β β βββ select.tsx
β β βββ separator.tsx
β β βββ sheet.tsx
β β βββ skeleton.tsx
β β βββ slider.tsx
β β βββ switch.tsx
β β βββ table.tsx
β β βββ tabs.tsx
β β βββ textarea.tsx
β β βββ toast.tsx
β β βββ toaster.tsx
β β βββ toggle-group.tsx
β β βββ toggle.tsx
β β βββ tooltip.tsx
β β βββ use-toast.ts
β βββ visualizations/
β β βββ ChordDiagram.tsx
β β βββ DegRankings.tsx
β β βββ PathwayDiagram.tsx
β β βββ PlotControls.tsx
β β βββ VolcanoPlot.tsx
β βββ Card.tsx
β βββ Footer.tsx
β βββ Header.tsx
β βββ Hero.tsx
β βββ MainContent.tsx
β βββ ModeToggle.tsx
β βββ SidePanel.tsx
βββ hooks/
β βββ use-mobile.tsx
β βββ use-toast.tsx
βββ lib/
βββ node_modules/
βββ public/
β βββ file.svg
β βββ globe.svg
β βββ logo.png
β βββ logo2.png
β βββ logo3.svg
β βββ next.svg
β βββ vercel.svg
β βββ window.svg
βββ tests/
β βββ README.md
β βββ test_api_routes.py
β βββ test_data_analysis.py
βββ .DS_Store
βββ .env
βββ .env.example
βββ .eslintrc.json
βββ .gitignore
βββ .npmrc
βββ components.json
βββ next-env.d.ts
βββ next.config.mjs
βββ package-lock.json
βββ package.json
βββ postcss.config.mjs
βββ README.md
βββ requirements.txt
βββ server.py
βββ tailwind.config.ts
βββ tsconfig.json
βββ wrangler.toml
- Clone the repository:
git clone https://github.com/aryehky/RNAlytics.git
- Install dependencies:
pip install -r requirements.txt
- Run analysis scripts:
python scripts/analyze_pathways.py
- Kayenat Aryeh: Lead Researcher and Data Analyst.
This project is licensed under the MIT License. See the LICENSE file for details.
python -m venv rna_seq_env
source rna_seq_env/bin/activate
pip install flask pandas numpy matplotlib plotly pytest fastapi uvicorn
pip install scikit-learn scipy statsmodels
pip freeze > requirements.txt
The frontend will be available at http://localhost:3000 The backend API will be available at http://localhost:8000 You'll need to add your actual data files to the data/raw directory Create Jupyter notebooks in the notebooks directory for your analysis Add your tests in the tests directory Configure your deployment settings based on your chosen platforms (Vercel, AWS, etc.)