-
Notifications
You must be signed in to change notification settings - Fork 663
Main Config
ashleve edited this page Jul 12, 2022
·
1 revision
Location: configs/train.yaml
Main project config contains default training configuration.
It determines how config is composed when simply executing command python train.py
.
Show main project config
# order of defaults determines the order in which configs override each other
defaults:
- _self_
- datamodule: mnist.yaml
- model: mnist.yaml
- callbacks: default.yaml
- logger: null # set logger here or use command line (e.g. `python train.py logger=csv`)
- trainer: default.yaml
- paths: default.yaml
- extras: default.yaml
- hydra: default.yaml
# experiment configs allow for version control of specific hyperparameters
# e.g. best hyperparameters for given model and datamodule
- experiment: null
# config for hyperparameter optimization
- hparams_search: null
# optional local config for machine/user specific settings
# it's optional since it doesn't need to exist and is excluded from version control
- optional local: default.yaml
# debugging config (enable through command line, e.g. `python train.py debug=default)
- debug: null
# task name, determines output directory path
task_name: "train"
# tags to help you identify your experiments
# you can overwrite this in experiment configs
# overwrite from command line with `python train.py tags="[first_tag, second_tag]"`
# appending lists from command line is currently not supported :(
# https://github.com/facebookresearch/hydra/issues/1547
tags: ["dev"]
# set False to skip model training
train: True
# evaluate on test set, using best model weights achieved during training
# lightning chooses best weights based on the metric specified in checkpoint callback
test: True
# simply provide checkpoint path to resume training
ckpt_path: null
# seed for random number generators in pytorch, numpy and python.random
seed: null