-
-
Notifications
You must be signed in to change notification settings - Fork 924
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
113 additions
and
344 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
""" | ||
Test module for alpaca integration w chatml | ||
""" | ||
import pytest | ||
from datasets import Dataset | ||
from tokenizers import AddedToken | ||
from transformers import AutoTokenizer | ||
|
||
from axolotl.datasets import TokenizedPromptDataset | ||
from axolotl.prompt_tokenizers import AlpacaPromptTokenizingStrategy | ||
from axolotl.prompters import AlpacaPrompter, PromptStyle | ||
|
||
|
||
@pytest.fixture(name="alpaca_dataset") | ||
def fixture_alpaca_dataset(): | ||
return Dataset.from_list( | ||
[ | ||
{ | ||
"instruction": "Evaluate this sentence for spelling and grammar mistakes", | ||
"input": "He finnished his meal and left the resturant", | ||
"output": "He finished his meal and left the restaurant.", | ||
} | ||
] | ||
) | ||
|
||
|
||
@pytest.fixture(name="tokenizer") | ||
def fixture_tokenizer(): | ||
# pylint: disable=all | ||
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") | ||
tokenizer.add_special_tokens( | ||
{ | ||
"eos_token": AddedToken( | ||
"<|im_end|>", rstrip=False, lstrip=False, normalized=False | ||
) | ||
} | ||
) | ||
tokenizer.add_tokens( | ||
[ | ||
AddedToken("<|im_start|>", rstrip=False, lstrip=False, normalized=False), | ||
] | ||
) | ||
|
||
return tokenizer | ||
|
||
|
||
class TestAlpacaChatml: | ||
""" | ||
Test class for alpaca prompter | ||
""" | ||
|
||
def test_no_double_im_end(self, alpaca_dataset, tokenizer): | ||
strategy = AlpacaPromptTokenizingStrategy( | ||
AlpacaPrompter(prompt_style=PromptStyle.CHATML.value), | ||
tokenizer, | ||
False, # train_on_inputs | ||
2048, # sequence_len | ||
) | ||
|
||
dataset_wrapper = TokenizedPromptDataset( | ||
strategy, alpaca_dataset, process_count=1 | ||
) | ||
|
||
input_ids = dataset_wrapper[0]["input_ids"] | ||
# fmt: off | ||
assert input_ids == [ | ||
1, # Bos | ||
32001,1587,13,20548,336,349,396,13126,369,13966,264,3638,28725,5881,1360,395,396,2787,369,5312,3629,2758,28723,12018,264,2899,369,6582,1999,2691,274,272,2159,28723,32000,28705,13, # instruction | ||
32001,2188,13,16627,11931,456,12271,354,668,3572,304,18756,3479,17179,13,2428,854,28711,1497,516,11314,304,1749,272,1846,324,440,32000,28705,13, # input | ||
32001,13892,13,650,5967,516,11314,304,1749,272,9926,28723,32000, # output | ||
] | ||
|
||
def test_no_train_on_input(self, alpaca_dataset, tokenizer): | ||
strategy = AlpacaPromptTokenizingStrategy( | ||
AlpacaPrompter(prompt_style=PromptStyle.CHATML.value), | ||
tokenizer, | ||
False, # train_on_inputs | ||
2048, # sequence_len | ||
) | ||
|
||
dataset_wrapper = TokenizedPromptDataset( | ||
strategy, alpaca_dataset, process_count=1 | ||
) | ||
|
||
labels = dataset_wrapper[0]["labels"] | ||
# fmt: off | ||
assert labels == [ | ||
-100, # bos | ||
-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100, # instruction | ||
-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100,-100, # input | ||
-100,-100,-100,650,5967,516,11314,304,1749,272,9926,28723,32000, # Output | ||
] | ||
|
||
def test_w_train_on_input(self, alpaca_dataset, tokenizer): | ||
strategy = AlpacaPromptTokenizingStrategy( | ||
AlpacaPrompter(prompt_style=PromptStyle.CHATML.value), | ||
tokenizer, | ||
True, # train_on_inputs | ||
2048, # sequence_len | ||
) | ||
|
||
dataset_wrapper = TokenizedPromptDataset( | ||
strategy, alpaca_dataset, process_count=1 | ||
) | ||
|
||
labels = dataset_wrapper[0]["labels"] | ||
# fmt: off | ||
assert labels == [ | ||
1, # Bos | ||
32001,1587,13,20548,336,349,396,13126,369,13966,264,3638,28725,5881,1360,395,396,2787,369,5312,3629,2758,28723,12018,264,2899,369,6582,1999,2691,274,272,2159,28723,32000,28705,13, # instruction | ||
32001,2188,13,16627,11931,456,12271,354,668,3572,304,18756,3479,17179,13,2428,854,28711,1497,516,11314,304,1749,272,1846,324,440,32000,28705,13, # input | ||
32001,13892,13,650,5967,516,11314,304,1749,272,9926,28723,32000, # output | ||
] |
Oops, something went wrong.