Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Multimodal integration - pixtral/llava/qwen2-vl #2170

Open
wants to merge 16 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 63 additions & 0 deletions examples/llava/lora-7b.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
base_model: llava-hf/llava-1.5-7b-hf
processor_type: AutoProcessor
strict: false

# these 3 lines are needed for now to handle vision chat templates w images
skip_prepare_dataset: true
remove_unused_columns: false
sample_packing: false

chat_template: llava
datasets:
- path: HuggingFaceH4/llava-instruct-mix-vsft
type: chat_template
split: train[:1%]
field_messages: messages
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./outputs/out

adapter: lora
lora_model_dir:

sequence_len: 8192
pad_to_sequence_len: false

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules: 'language_model.model.layers.[\d]+.(mlp|cross_attn|self_attn).(up|down|gate|q|k|v|o)_proj'

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: true

gradient_checkpointing: true
local_rank:
logging_steps: 1
flash_attention: true
eager_attention:

warmup_ratio: 0.1
evals_per_epoch: 1
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
65 changes: 65 additions & 0 deletions examples/pixtral/lora-12b.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
base_model: mistral-community/pixtral-12b
processor_type: AutoProcessor
strict: false

# these 3 lines are needed for now to handle vision chat templates w images
skip_prepare_dataset: true
remove_unused_columns: false
sample_packing: false

chat_template: pixtral
datasets:
- path: HuggingFaceH4/llava-instruct-mix-vsft
type: chat_template
split: train[:1%]
field_messages: messages
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./outputs/out

adapter: lora
lora_model_dir:

sequence_len: 8192
pad_to_sequence_len: false

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules: 'language_model.model.layers.[\d]+.(mlp|cross_attn|self_attn).(up|down|gate|q|k|v|o)_proj'

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: true

gradient_checkpointing: true
local_rank:
logging_steps: 1
flash_attention: false # PixtralVisionModel does not support Flash Attention 2.0 yet
eager_attention:

warmup_ratio: 0.1
evals_per_epoch: 1
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
63 changes: 63 additions & 0 deletions examples/qwen2-vl/lora-7b.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
base_model: Qwen/Qwen2-VL-7B-Instruct
processor_type: AutoProcessor
strict: false

# these 3 lines are needed for now to handle vision chat templates w images
skip_prepare_dataset: true
remove_unused_columns: false
sample_packing: false

chat_template: qwen2_vl
datasets:
- path: HuggingFaceH4/llava-instruct-mix-vsft
type: chat_template
split: train[:1%]
field_messages: messages
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./outputs/out

adapter: lora
lora_model_dir:

sequence_len: 8192
pad_to_sequence_len: false

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules: 'model.layers.[\d]+.(mlp|cross_attn|self_attn).(up|down|gate|q|k|v|o)_proj'

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: true

gradient_checkpointing: true
local_rank:
logging_steps: 1
flash_attention: true
eager_attention:

warmup_ratio: 0.1
evals_per_epoch: 1
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
6 changes: 4 additions & 2 deletions src/axolotl/core/trainer_builder.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@
from axolotl.integrations.base import PluginManager
from axolotl.monkeypatch.multipack import SUPPORTED_MULTIPACK_MODEL_TYPES
from axolotl.monkeypatch.relora import ReLoRACallback, ReLoRAScheduler
from axolotl.processing_strategies import get_processing_strategy
from axolotl.utils import is_comet_available, is_mlflow_available
from axolotl.utils.callbacks import (
EvalFirstStepCallback,
Expand Down Expand Up @@ -2015,8 +2016,9 @@ def build_collator(
else:
if self.cfg.processor_type and self.processor:
collator = MultiModalChatDataCollator
kwargs["processor"] = self.processor
kwargs["chat_template"] = training_args.chat_template
kwargs["processing_strategy"] = get_processing_strategy(
self.processor, training_args.chat_template, self.cfg.chat_template
)
elif self.cfg.batch_flattening:
collator = DataCollatorWithFlattening
collator_args.pop(0)
Expand Down
Loading
Loading