Skip to content

Commit

Permalink
Update citations
Browse files Browse the repository at this point in the history
  • Loading branch information
stefanradev93 committed Jul 16, 2023
1 parent 5cd591a commit a5452a1
Showing 1 changed file with 6 additions and 6 deletions.
12 changes: 6 additions & 6 deletions docsrc/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -48,13 +48,13 @@ Citation

You can cite BayesFlow along the lines of:

- We estimated the approximate posterior distribution with neural posterior estimation and learned summary statistics (NPE; Radev et al., 2020) via the BayesFlow software for amortized Bayesian workflows (Radev et al., 2023b).
- We trained a neural likelihood estimator (NLE; Papamakarios et al., 2019) via the BayesFlow software for amortized Bayesian workflows (Radev et al., 2023b).
- We sampled from the approximate joint distribution :math:`p(x, \theta)` using jointly amortized neural approximation (JANA; Radev et al., 2023a), as implemented in the BayesFlow software for amortized Bayesian workflows (Radev et al., 2023b).

1. Radev, S. T., Schmitt, M., Schumacher, L., Elsemüller, L., Pratz, V., Schälte, Y., Köthe, U., & Bürkner, P.-C. (2023). BayesFlow: Amortized Bayesian Workflows With Neural Networks. *arXiv:2306.16015*. (`arXiv paper <https://arxiv.org/abs/2306.16015>`__)
2. Radev, S. T., Schmitt, M., Pratz, V., Picchini, U., Köthe, U., & Bürkner, P.-C. (2023). JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models. *39th conference on Uncertainty in Artificial Intelligence*. (`UAI Proceedings <https://openreview.net/forum?id=dS3wVICQrU0>`__)
- We approximated the posterior with neural posterior estimation and learned summary statistics (NPE; Radev et al., 2020), as implemented in the BayesFlow software for amortized Bayesian workflows (Radev et al., 2023b).
- We approximated the likelihood with neural likelihood estimation (NLE; Papamakarios et al., 2019) without hand-cafted summary statistics, as implemented in the BayesFlow software for amortized Bayesian workflows (Radev et al., 2023b).
- We performed simultaneous posterior and likelihood estimation with jointly amortized neural approximation (JANA; Radev et al., 2023a), as implemented in the BayesFlow software for amortized Bayesian workflows (Radev et al., 2023b).

1. Radev, S. T., Schmitt, M., Schumacher, L., Elsemüller, L., Pratz, V., Schälte, Y., Köthe, U., & Bürkner, P.-C. (2023). BayesFlow: Amortized Bayesian workflows with neural networks. *arXiv:2306.16015*. (`arXiv paper <https://arxiv.org/abs/2306.16015>`__)
2. Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., Köthe, U. (2020). BayesFlow: Learning complex stochastic models with invertible neural networks. *IEEE Transactions on Neural Networks and Learning Systems, 33(4)*, 1452-1466. (`IEEE TNNLS <https://ieeexplore.ieee.org/document/9298920>`__)
3. Radev, S. T., Schmitt, M., Pratz, V., Picchini, U., Köthe, U., & Bürkner, P.-C. (2023). JANA: Jointly amortized neural approximation of complex Bayesian models. *Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, 216*, 1695-1706. (`PMLR <https://proceedings.mlr.press/v216/radev23a.html>`__)

::

Expand Down

0 comments on commit a5452a1

Please sign in to comment.