Skip to content

Commit

Permalink
Built site for gh-pages
Browse files Browse the repository at this point in the history
  • Loading branch information
Quarto GHA Workflow Runner committed Jan 11, 2024
1 parent ac55cad commit eead50c
Show file tree
Hide file tree
Showing 35 changed files with 385 additions and 47 deletions.
2 changes: 1 addition & 1 deletion .nojekyll
Original file line number Diff line number Diff line change
@@ -1 +1 @@
f28fdb67
4d4adf03
Binary file modified labs/06/scf.pdf
Binary file not shown.
Binary file modified labs/09/collab_with_git.pdf
Binary file not shown.
Binary file modified labs/lab0-setup.pdf
Binary file not shown.
Binary file modified labs/lab1-submission.pdf
Binary file not shown.
Binary file modified labs/lab2-testing.pdf
Binary file not shown.
Binary file modified labs/lab3-debugging.pdf
Binary file not shown.
Binary file modified labs/lab5-codereview.pdf
Binary file not shown.
Binary file modified labs/py_vs_R.pdf
Binary file not shown.
338 changes: 338 additions & 0 deletions project/baseball.dat

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion project/project.html
Original file line number Diff line number Diff line change
Expand Up @@ -280,7 +280,7 @@ <h1 class="title">Final Project</h1>
<p>Please use standard citation practices to cite any papers/code/online resources/people whose ideas you make use of. Please do not consult with class members who are not in your group.</p>
<section id="problem" class="level1">
<h1>Problem</h1>
<p>Your task is to implement and experiment with the use of genetic algorithms for variable selection, including both linear regression and GLMs (though the ideas and implemention would readily generalize to other statistics/ML/DS methods). Some details on genetic algorithms are available in <a href="https://onlinelibrary.wiley.com/doi/book/10.1002/9781118555552">Section 3.4 of the Givens and Hoeting book on Computational Statistics</a> and the baseball data discussed there are in the class GitHub repository as <code>project/baseball.dat</code>. You should also be able to find plenty of other information about genetic algorithms online. The result should be an Python package that I can easily use (in particular, I will be testing your code on my own test cases). My grading will be largely based on the following items.</p>
<p>Your task is to implement and experiment with the use of genetic algorithms for variable selection, including both linear regression and GLMs (though the ideas and implemention would readily generalize to other statistics/ML/DS methods). Some details on genetic algorithms are available in <a href="https://onlinelibrary.wiley.com/doi/book/10.1002/9781118555552">Section 3.4 of the Givens and Hoeting book on Computational Statistics</a> and the baseball data discussed there are in the class GitHub repository as <a href="./baseball.dat"><code>project/baseball.dat</code></a>. You should also be able to find plenty of other information about genetic algorithms online. The result should be an Python package that I can easily use (in particular, I will be testing your code on my own test cases). My grading will be largely based on the following items.</p>
<ol type="1">
<li><p>Your solution should allow the user to provide sensible inputs. Key inputs of course are the dataset and the type of regression, which you should just be able to pass along to relevant functions from the <code>statsmodels</code> or <code>scikit-learn</code> packages. By default you should just use AIC as your objective criterion but allow users to provide their own objective function. Similarly you can use the genetic operators described in Givens and Hoeting for variable selection, but ideally your code should be general enough that a user could provide additional operators. For various inputs that control the behavior of the genetic algorithm you should try to come up with good defaults (based in part on point 4 below), but also give users flexibility.</p></li>
<li><p>Your solution should involve modular code, with functions or OOP methods that implement discrete tasks. You should have an overall design and style that is consistent across the components.</p></li>
Expand Down
Binary file modified project/project.pdf
Binary file not shown.
Binary file modified ps/ps1.pdf
Binary file not shown.
Binary file modified ps/ps2.pdf
Binary file not shown.
Binary file modified ps/ps3.pdf
Binary file not shown.
Binary file modified ps/ps4.pdf
Binary file not shown.
Binary file modified ps/ps5.pdf
Binary file not shown.
Binary file modified ps/ps6.pdf
Binary file not shown.
Binary file modified ps/ps7.pdf
Binary file not shown.
Binary file modified ps/ps8.pdf
Binary file not shown.
Binary file modified ps/regex.pdf
Binary file not shown.
90 changes: 45 additions & 45 deletions sitemap.xml
Original file line number Diff line number Diff line change
Expand Up @@ -2,182 +2,182 @@
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/ps/ps5.html</loc>
<lastmod>2023-12-22T02:54:53.027Z</lastmod>
<lastmod>2024-01-11T00:37:54.627Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/ps/ps6.html</loc>
<lastmod>2023-12-22T02:54:46.727Z</lastmod>
<lastmod>2024-01-11T00:37:48.371Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/ps/ps1.html</loc>
<lastmod>2023-12-22T02:54:40.739Z</lastmod>
<lastmod>2024-01-11T00:37:42.459Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/ps/ps2.html</loc>
<lastmod>2023-12-22T02:54:34.791Z</lastmod>
<lastmod>2024-01-11T00:37:36.595Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/ps/ps8.html</loc>
<lastmod>2023-12-22T02:54:29.247Z</lastmod>
<lastmod>2024-01-11T00:37:31.115Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/project/project.html</loc>
<lastmod>2023-12-22T02:54:25.667Z</lastmod>
<lastmod>2024-01-11T00:37:27.587Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/labs/lab2-testing.html</loc>
<lastmod>2023-12-22T02:54:22.427Z</lastmod>
<lastmod>2024-01-11T00:37:24.399Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/labs/lab1-submission.html</loc>
<lastmod>2023-12-22T02:54:15.203Z</lastmod>
<lastmod>2024-01-11T00:37:17.267Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/labs/06/scf.html</loc>
<lastmod>2023-12-22T02:54:03.823Z</lastmod>
<lastmod>2024-01-11T00:37:05.974Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/labs/lab5-codereview.html</loc>
<lastmod>2023-12-22T02:53:51.067Z</lastmod>
<lastmod>2024-01-11T00:36:53.658Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/schedule.html</loc>
<lastmod>2023-12-22T02:53:47.803Z</lastmod>
<lastmod>2024-01-11T00:36:50.462Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/howtos/accessingUnixCommandLine.html</loc>
<lastmod>2023-12-22T02:53:47.015Z</lastmod>
<lastmod>2024-01-11T00:36:49.662Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/howtos/windowsInstall.html</loc>
<lastmod>2023-12-22T02:53:46.347Z</lastmod>
<lastmod>2024-01-11T00:36:49.006Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/howtos/RandRStudioInstall.html</loc>
<lastmod>2023-12-22T02:53:45.619Z</lastmod>
<lastmod>2024-01-11T00:36:48.286Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/howtos/ps-submission.html</loc>
<lastmod>2023-12-22T02:53:45.023Z</lastmod>
<lastmod>2024-01-11T00:36:47.710Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/index.html</loc>
<lastmod>2023-12-22T02:53:44.027Z</lastmod>
<lastmod>2024-01-11T00:36:46.730Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/units/unit10-linalg.html</loc>
<lastmod>2023-12-22T02:53:29.695Z</lastmod>
<lastmod>2024-01-11T00:36:32.698Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/units/unit6-parallel.html</loc>
<lastmod>2023-12-22T02:52:52.268Z</lastmod>
<lastmod>2024-01-11T00:35:56.238Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/units/test.html</loc>
<lastmod>2023-12-22T02:52:37.080Z</lastmod>
<lastmod>2024-01-11T00:35:41.298Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/units/unit8-numbers.html</loc>
<lastmod>2023-12-22T02:52:18.256Z</lastmod>
<lastmod>2024-01-11T00:35:22.814Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/units/unit12-graphics.html</loc>
<lastmod>2023-12-22T02:52:04.176Z</lastmod>
<lastmod>2024-01-11T00:35:09.006Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/units/unit9-sim.html</loc>
<lastmod>2023-12-22T02:51:54.268Z</lastmod>
<lastmod>2024-01-11T00:34:59.186Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/publish.html</loc>
<lastmod>2023-12-22T02:51:45.860Z</lastmod>
<lastmod>2024-01-11T00:34:50.942Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/units/unit3-bash.html</loc>
<lastmod>2023-12-22T02:51:47.512Z</lastmod>
<lastmod>2024-01-11T00:34:52.562Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/units/unit1-intro.html</loc>
<lastmod>2023-12-22T02:51:59.480Z</lastmod>
<lastmod>2024-01-11T00:35:04.374Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/units/unit4-goodPractices.html</loc>
<lastmod>2023-12-22T02:52:11.396Z</lastmod>
<lastmod>2024-01-11T00:35:16.082Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/units/unit11-optim.html</loc>
<lastmod>2023-12-22T02:52:31.160Z</lastmod>
<lastmod>2024-01-11T00:35:35.438Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/units/unit7-bigData.html</loc>
<lastmod>2023-12-22T02:52:43.036Z</lastmod>
<lastmod>2024-01-11T00:35:47.186Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/units/unit5-programming.html</loc>
<lastmod>2023-12-22T02:53:10.548Z</lastmod>
<lastmod>2024-01-11T00:36:14.106Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/units/unit2-dataTech.html</loc>
<lastmod>2023-12-22T02:53:38.347Z</lastmod>
<lastmod>2024-01-11T00:36:41.118Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/howtos/windowsAndLinux.html</loc>
<lastmod>2023-12-22T02:53:44.623Z</lastmod>
<lastmod>2024-01-11T00:36:47.314Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/howtos/quartoInstall.html</loc>
<lastmod>2023-12-22T02:53:45.307Z</lastmod>
<lastmod>2024-01-11T00:36:47.982Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/howtos/gitInstall.html</loc>
<lastmod>2023-12-22T02:53:45.919Z</lastmod>
<lastmod>2024-01-11T00:36:48.586Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/howtos/accessingPython.html</loc>
<lastmod>2023-12-22T02:53:46.679Z</lastmod>
<lastmod>2024-01-11T00:36:49.330Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/office_hours.html</loc>
<lastmod>2023-12-22T02:53:47.287Z</lastmod>
<lastmod>2024-01-11T00:36:49.938Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/labs/lab0-setup.html</loc>
<lastmod>2023-12-22T02:53:48.391Z</lastmod>
<lastmod>2024-01-11T00:36:51.030Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/labs/09/collab_with_git.html</loc>
<lastmod>2023-12-22T02:53:55.199Z</lastmod>
<lastmod>2024-01-11T00:36:57.654Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/labs/lab3-debugging.html</loc>
<lastmod>2023-12-22T02:54:11.091Z</lastmod>
<lastmod>2024-01-11T00:37:13.171Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/labs/py_vs_R.html</loc>
<lastmod>2023-12-22T02:54:18.167Z</lastmod>
<lastmod>2024-01-11T00:37:20.159Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/rubric.html</loc>
<lastmod>2023-12-22T02:54:24.959Z</lastmod>
<lastmod>2024-01-11T00:37:26.887Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/syllabus.html</loc>
<lastmod>2023-12-22T02:54:28.571Z</lastmod>
<lastmod>2024-01-11T00:37:30.447Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/ps/regex.html</loc>
<lastmod>2023-12-22T02:54:31.915Z</lastmod>
<lastmod>2024-01-11T00:37:33.747Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/ps/ps7.html</loc>
<lastmod>2023-12-22T02:54:37.575Z</lastmod>
<lastmod>2024-01-11T00:37:39.343Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/ps/ps4.html</loc>
<lastmod>2023-12-22T02:54:43.755Z</lastmod>
<lastmod>2024-01-11T00:37:45.435Z</lastmod>
</url>
<url>
<loc>https://github.com/berkeley-stat243/stat243-fall-2023/ps/ps3.html</loc>
<lastmod>2023-12-22T02:54:49.719Z</lastmod>
<lastmod>2024-01-11T00:37:51.331Z</lastmod>
</url>
</urlset>
Binary file modified units/test.pdf
Binary file not shown.
Binary file modified units/unit1-intro.pdf
Binary file not shown.
Binary file modified units/unit10-linalg.pdf
Binary file not shown.
Binary file modified units/unit11-optim.pdf
Binary file not shown.
Binary file modified units/unit12-graphics.pdf
Binary file not shown.
Binary file modified units/unit2-dataTech.pdf
Binary file not shown.
Binary file modified units/unit3-bash.pdf
Binary file not shown.
Binary file modified units/unit4-goodPractices.pdf
Binary file not shown.
Binary file modified units/unit5-programming.pdf
Binary file not shown.
Binary file modified units/unit6-parallel.pdf
Binary file not shown.
Binary file modified units/unit7-bigData.pdf
Binary file not shown.
Binary file modified units/unit8-numbers.pdf
Binary file not shown.
Binary file modified units/unit9-sim.pdf
Binary file not shown.

0 comments on commit eead50c

Please sign in to comment.