Skip to content

Learning Agile Quadrupedal Locomotion on Challenging Terrains

License

Notifications You must be signed in to change notification settings

biorob/DeepTransition

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Transition Repository

This repository provides an implementation (Simulation code) of the CPG-RL framework in the following paper:

Viability Leads to the Emergence of Gait Transitions in Learning Agile Quadrupedal Locomotion on Challenging Terrains
Milad Shafiee , Guillaume Bellegarda and Auke Ijspeert
Nature Communications, vol. 15, no. 1, p. 3073, 2024.
Paper / Project page

 

@article{shafiee2024Viability,
  title={Viability leads to the emergence of gait transitions in learning agile quadrupedal locomotion on challenging terrains},
  author={Shafiee, Milad and Bellegarda, Guillaume and Ijspeert, Auke },
  journal={Nature Communications},
  volume={15},
  number={1},
  pages={3073},
  year={2024},
  publisher={Nature Publishing Group UK London}
}

🔨 System requirements and Installation (GPU > 8GB and CUDA needed)

We need GPU and Cuda installed for running the Isaac Gym simulator. To train in the default configuration, we recommend a GPU with at least 8GB memory. The code tested with GPU RTX-3070 (cuda-11.4) and GPU RTX-4090 (cuda-11.7). Installation of Nvidia drivers and Cuda may take couple of hours depending on the hardware. After having cuda installed and GPU ready, installation ideally will take less than 15 minutes:

💾 Create a new python virtual env with python 3.6, 3.7 or 3.8 (3.8 recommended)

  • virtualenv -p python3 DeepTransitionENV
  • source DeepTransitionENV/bin/activate

📄 Clone this repository and install dependencies:

  • pip install -r requirements.txt

  • Install pytorch 1.10 with cuda-11.3 or (pytorch 1.11 and cuda-11.4) (tested with GPU RTX-3070 on Ubuntu 18.04 and Ubuntu 20.04)

    • pip3 install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html

    or alternatively, Install pytorch 1.13 with cuda-11.7 (tested with GPU RTX-4090 on Ubuntu 20.04)

    • pip install torch==1.13.0+cu117 torchvision==0.14.0+cu117 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu117

🤸 Install Isaac Gym

  • Download and install Isaac Gym Preview 3 Download
  • cd isaacgym/python && pip install -e .
  • Check installation by running an example: cd examples && python 1080_balls_of_solitude.py

📈 Install rsl_rl (PPO)

  • cd rsl_rl && pip install -e .

🦿 Install legged_gym

  • cd legged_gym && pip install -e .

🏫 CODE STRUCTURE

The training environment is defined by an env file (quadruped.py) and a config file (quadruped_config.py) that these classes use inheritance. quadruped_config.py includes body names, default_joint_positions and PD gains, reward weights,etc. You need to modify the reward weights in quadruped_config.py and train the policy to reproduce the result of the paper. The config file contains two classes: one containing all the environment parameters (LeggedRobotCfg) and one for the training parameters (LeggedRobotCfgPPo). Central Pattern Generator (CPG) is defined by CPG.py.

🏋️ Instructions for training

  • Isaac Gym requires an NVIDIA GPU. To train in the default configuration, we recommend a GPU with at least 8GB memory. The code can run on a smaller GPU if you decrease the number of parallel environments (Cfg.env.num_envs) or reducing the precision of terrain meshes. Training will be slower with fewer environments. An example for training (training will take less than two hours with the suggest GPUs):

    python legged_gym/scripts/train.py --task=quadruped --max_iterations=3000 --num_envs=4096

  • To run on CPU add following arguments: --sim_device=cpu, --rl_device=cpu (sim on CPU and rl on GPU is possible). Running on CPU is not encouraged and may lead to different results.

  • To run without no rendering add --headless.

  • To improve performance, once the training starts (and if your are not running headless) make sure to press v to stop the rendering. You can then enable it later to check the progress.

  • The trained policy is saved in issacgym_anymal/logs/<experiment_name>/<date_time>_<run_name>/model_<iteration>.pt. Where <experiment_name> and <run_name> are defined in the train config.

  • The following command line arguments override the values set in the config files:

  • --task TASK: Task name.

  • --num_envs NUM_ENVS: Number of environments to create.

  • --max_iterations MAX_ITERATIONS: Maximum number of training iterations.

🏃 Play a pre-trained demo

Play a pre-trained policy (It will take less than one minute):

  • python legged_gym/scripts/play.py --task=quadruped

  • By default, the loaded policy is the last model of the last run of the experiment folder.

Acknowledgement

This environment builds on the amazing repository [legged gym environment](https://leggedrobotics.github.io/legged_gym/) by Nikita
Rudin, Robotic Systems Lab, ETH Zurich (Paper: https://arxiv.org/abs/2109.11978) and the Isaac Gym simulator from 
NVIDIA (Paper: https://arxiv.org/abs/2108.10470). Training code builds on the [rsl_rl](https://github.com/leggedrobotics/rsl_rl) 
repository, also by Nikita Rudin, Robotic Systems Lab, ETH Zurich. 
All redistributed code retains its original [license](LICENSES/legged_gym/LICENSE).

About

Learning Agile Quadrupedal Locomotion on Challenging Terrains

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%