-
Notifications
You must be signed in to change notification settings - Fork 793
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
A new example of using iSAM2 in Lidar SLAM #1936
Conversation
Adding a new examples in Laser SLAM using iSAM2
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Awesome! I do have some comments, and a big question: at the top you mention you only need to subscribe to odometry, but then where do the point clouds come from?
I like how you put some conversion code at the top, I'd lean into that more.
Finally, I think this will not compile without installing pcl and ros, which are not requirements in GTSAM. So, I think you need to add required packages, compilation instructions if needed, and also exclude this example from being built when we say "make examples"
examples/LidarISAM2Example.cpp
Outdated
how to solve this factor graph, i.e., how to set the variables in such a way that the whole graph best meets all the constraints (with minimum error) | ||
requires the use of an optimizer. In addition to the most common Gaussian-Newton and Levenberg-Marquardt optimizers for solving nonlinear problems, | ||
GTSAM implements two incremental optimizers, iSAM,iSAM2*/ | ||
ISAM2 *isam; |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It's a bit hard to read the code as there are many globals. Hence, it's hard to see in a function whether a variable is local or global. This is is also an issue in some of the otehr examples, TBH. I typically deal with this in one of two ways:
- append g to all globals, e.g., gISAM
- have an Algorithm class, and make all of these instance variables: isam_.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Here I used your first suggestion, since this is just a small test code, I won't wrap a separate class for them to make it easier to read. For a larger project I would have used the second, more robust approach.
examples/LidarISAM2Example.cpp
Outdated
how to solve this factor graph, i.e., how to set the variables in such a way that the whole graph best meets all the constraints (with minimum error) | ||
requires the use of an optimizer. In addition to the most common Gaussian-Newton and Levenberg-Marquardt optimizers for solving nonlinear problems, | ||
GTSAM implements two incremental optimizers, iSAM,iSAM2*/ | ||
ISAM2 *isam; |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Maybe use a std::unique_ptr
Thank you very much for your reply, I've modified my code as you suggested, hopefully it will help beginners using the program!
Hey, sorry, but it’s exactly because it’s an example that it needs to be easy to parse. It’s not that hard I think. To help you out I asked a “friend” to give it a try :-) #include <mutex>
#include <thread>
#include <queue>
#include <map>
#include <vector>
#include <iostream>
#include <chrono>
// ROS
#include <ros/ros.h>
#include <tf/transform_datatypes.h>
#include <tf/transform_broadcaster.h>
#include <nav_msgs/Odometry.h>
#include <nav_msgs/Path.h>
#include <geometry_msgs/PoseStamped.h>
// PCL
#include <pcl_conversions/pcl_conversions.h>
#include <pcl/common/eigen.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/point_types.h>
// Eigen
#include <eigen3/Eigen/Dense>
// GTSAM
#include <gtsam/nonlinear/ISAM2.h>
#include <gtsam/nonlinear/ISAM2Params.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Marginals.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/linear/NoiseModel.h>
using namespace gtsam;
/**
* A dedicated class storing position + orientation + time.
* Public fields allow direct use in PCL macros.
*/
class PosePoint
{
public:
// Required by PCL macros
float x = 0.f;
float y = 0.f;
float z = 0.f;
float intensity = 0.f;
float roll = 0.f;
float pitch = 0.f;
float yaw = 0.f;
double time = 0.0;
PosePoint() = default;
// Named constructor for direct (x,y,z,roll,pitch,yaw,intensity,time).
static PosePoint fromXYZRPY(float x, float y, float z,
float roll, float pitch, float yaw,
float intensity, double time)
{
PosePoint pp;
pp.x = x;
pp.y = y;
pp.z = z;
pp.roll = roll;
pp.pitch = pitch;
pp.yaw = yaw;
pp.intensity = intensity;
pp.time = time;
return pp;
}
// Named constructor from a gtsam::Pose3 plus extra fields.
static PosePoint fromPose3(const Pose3 &pose, float intensity, double time)
{
PosePoint pp;
pp.x = pose.translation().x();
pp.y = pose.translation().y();
pp.z = pose.translation().z();
pp.roll = pose.rotation().roll();
pp.pitch = pose.rotation().pitch();
pp.yaw = pose.rotation().yaw();
pp.intensity = intensity;
pp.time = time;
return pp;
}
// Convert to GTSAM Pose3.
Pose3 toGtsamPose3() const
{
return Pose3(Rot3::RzRyRx(double(roll), double(pitch), double(yaw)),
Point3(double(x), double(y), double(z)));
}
};
// Register with PCL so it can be stored in a point cloud.
POINT_CLOUD_REGISTER_POINT_STRUCT(
PosePoint,
(float, x, x)
(float, y, y)
(float, z, z)
(float, intensity, intensity)
(float, roll, roll)
(float, pitch, pitch)
(float, yaw, yaw)
(double, time, time)
)
// ----------------------------------------------------------------------------
// Free functions that do NOT reference any instance data
inline Pose3 trans2gtsamPose(const float transformIn[6])
{
return Pose3(Rot3::RzRyRx(transformIn[0], transformIn[1], transformIn[2]),
Point3(transformIn[3], transformIn[4], transformIn[5]));
}
inline Eigen::Affine3f pclPointToAffine3f(const PosePoint &p)
{
return pcl::getTransformation(p.x, p.y, p.z, p.roll, p.pitch, p.yaw);
}
// ----------------------------------------------------------------------------
// The refactored Example class
class Example
{
public:
Example(ros::NodeHandle &nh)
{
// iSAM2 parameters
parameters_.relinearizeThreshold = 0.1;
parameters_.relinearizeSkip = 1;
iSam_ = std::make_unique<ISAM2>(parameters_);
// Publisher
pathPub_ = nh.advertise<nav_msgs::Path>("odom_path", 10, true);
}
// Called from main to push odometry messages into our queue
void laserOdometryHandler(const nav_msgs::Odometry::ConstPtr &laserOdometry)
{
mBuf_.lock();
odometryBuf_.push(laserOdometry);
mBuf_.unlock();
timeLaserInfoStamp_ = laserOdometry->header.stamp;
timeLaserInfoCur_ = laserOdometry->header.stamp.toSec();
}
// Main processing loop: update, add factors, correct
void runThread()
{
while (ros::ok())
{
updateInitGuess();
saveKeyFrameAndFactor();
correctPoses();
std::this_thread::sleep_for(std::chrono::milliseconds(2));
}
}
// Loop closure detection on a separate thread
void loopClosureThread()
{
ros::Rate rate(1.0);
while (ros::ok())
{
rate.sleep();
performLoopClosure();
}
}
private:
// 1) Update from odometry buffer
void updateInitGuess()
{
if (!odometryBuf_.empty())
{
mBuf_.lock();
auto odom = odometryBuf_.front();
odometryBuf_.pop();
while (!odometryBuf_.empty())
{
odometryBuf_.pop(); // drop to keep it real-time
ROS_INFO("Dropped an extra odometry frame");
}
mBuf_.unlock();
// Convert to transformTobeMapped_
Eigen::Quaterniond q_odom(
odom->pose.pose.orientation.w,
odom->pose.pose.orientation.x,
odom->pose.pose.orientation.y,
odom->pose.pose.orientation.z);
Eigen::Vector3d t_odom(
odom->pose.pose.position.x,
odom->pose.pose.position.y,
odom->pose.pose.position.z);
odomToTransform(q_odom, t_odom);
}
}
// 2) Decide if a new keyframe is needed
bool saveFrame()
{
static bool first = true;
if (first)
{
// first keyframe
// Use a named constructor for clarity:
PosePoint initial = PosePoint::fromXYZRPY(
transformTobeMapped_[3], transformTobeMapped_[4], transformTobeMapped_[5],
transformTobeMapped_[0], transformTobeMapped_[1], transformTobeMapped_[2],
0.0 /*intensity*/, 0.0 /*time*/);
cloudKeyPoses6D_->push_back(initial);
first = false;
return true;
}
// Compare transform of last keyframe vs. current
PosePoint &lastKf = cloudKeyPoses6D_->back();
Eigen::Affine3f transStart = pclPointToAffine3f(lastKf);
Eigen::Affine3f transFinal = pcl::getTransformation(
transformTobeMapped_[3], transformTobeMapped_[4], transformTobeMapped_[5],
transformTobeMapped_[0], transformTobeMapped_[1], transformTobeMapped_[2]);
Eigen::Affine3f transBetween = transStart.inverse() * transFinal;
float x, y, z, roll, pitch, yaw;
pcl::getTranslationAndEulerAngles(transBetween, x, y, z, roll, pitch, yaw);
float distThresh = 1.0f;
float angleThresh = 0.2f;
if (fabs(roll) < angleThresh &&
fabs(pitch) < angleThresh &&
fabs(yaw) < angleThresh &&
sqrtf(x*x + y*y + z*z) < distThresh)
{
return false; // not enough motion to be a keyframe
}
return true;
}
// 3) Add odometry factor to the factor graph
void addOdomFactor()
{
// If empty => first factor => Prior
if (cloudKeyPoses3D_->points.empty())
{
auto priorNoise = noiseModel::Diagonal::Variances(
(Vector(6) << 1e-2, 1e-2, M_PI*M_PI, 1e4, 1e4, 1e4).finished());
tSAMgraph_.add(PriorFactor<Pose3>(
0, trans2gtsamPose(transformTobeMapped_), priorNoise));
initialEstimate_.insert(0, trans2gtsamPose(transformTobeMapped_));
}
else
{
// Odom factor between last pose and current
auto odometryNoise = noiseModel::Diagonal::Variances(
(Vector(6) << 1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4).finished());
// previous
Eigen::Vector3d euler_last = lastQuat_.toRotationMatrix().eulerAngles(2,1,0);
Pose3 poseFrom(Rot3::RzRyRx(euler_last[0], euler_last[1], euler_last[2]),
Point3(lastTrans_[0], lastTrans_[1], lastTrans_[2]));
// current
Eigen::Vector3d euler_curr = currQuat_.toRotationMatrix().eulerAngles(2,1,0);
Pose3 poseTo(Rot3::RzRyRx(euler_curr[0], euler_curr[1], euler_curr[2]),
Point3(currTrans_[0], currTrans_[1], currTrans_[2]));
tSAMgraph_.add(BetweenFactor<Pose3>(
cloudKeyPoses3D_->size()-1,
cloudKeyPoses3D_->size(),
poseFrom.between(poseTo),
odometryNoise));
initialEstimate_.insert(cloudKeyPoses3D_->size(), poseTo);
}
// Store current odometry as "last"
recordLastFrame();
}
// 4) Add any loop factors that were discovered
void addLoopFactor()
{
if (loopIndexQueue_.empty()) return;
for (size_t i = 0; i < loopIndexQueue_.size(); i++)
{
int idxFrom = loopIndexQueue_[i].first;
int idxTo = loopIndexQueue_[i].second;
Pose3 poseBetween = loopPoseQueue_[i];
auto noise = noiseModel::Diagonal::Sigmas(
(Vector(6) << Vector3::Constant(1e-6), Vector3::Constant(0.03)).finished());
tSAMgraph_.add(BetweenFactor<Pose3>(idxFrom, idxTo, poseBetween, noise));
}
loopIndexQueue_.clear();
loopPoseQueue_.clear();
loopIsClosed_ = true;
}
// 5) Combine the logic for saving a keyframe + building factor graph + optimizing
void saveKeyFrameAndFactor()
{
if (!saveFrame())
return;
addOdomFactor();
addLoopFactor();
// iSAM2 optimization
iSam_->update(tSAMgraph_, initialEstimate_);
iSam_->update();
// If loop closure was added, re-run a few times
if (loopIsClosed_)
{
for(int i = 0; i < 5; i++)
iSam_->update();
}
// Clear for next iteration
tSAMgraph_.resize(0);
initialEstimate_.clear();
// Get the newest pose
iSamCurrentEstimate_ = iSam_->calculateEstimate();
Pose3 latestEstimate = iSamCurrentEstimate_.at<Pose3>(iSamCurrentEstimate_.size() - 1);
// Convert to a PosePoint
PosePoint thisPose6D = PosePoint::fromPose3(
latestEstimate,
static_cast<float>(cloudKeyPoses3D_->size()), // intensity as index
timeLaserInfoCur_);
// For the 3D key-poses (PCL uses e.g. pcl::PointXYZ)
pcl::PointXYZ p3d;
p3d.x = thisPose6D.x;
p3d.y = thisPose6D.y;
p3d.z = thisPose6D.z;
p3d.data[3] = 1.0f; // homogeneous coordinate
p3d.intensity = thisPose6D.intensity;
cloudKeyPoses3D_->push_back(p3d);
cloudKeyPoses6D_->push_back(thisPose6D);
// Publish path
updatePath(thisPose6D);
globalPath_.header.stamp = timeLaserInfoStamp_;
globalPath_.header.frame_id = "camera_init";
pathPub_.publish(globalPath_);
}
// 6) Correct all older poses after loop closures
void correctPoses()
{
if (cloudKeyPoses3D_->empty()) return;
if (loopIsClosed_)
{
iSamCurrentEstimate_ = iSam_->calculateEstimate();
int numPoses = iSamCurrentEstimate_.size();
globalPath_.poses.clear();
for (int i = 0; i < numPoses; i++)
{
Pose3 est = iSamCurrentEstimate_.at<Pose3>(i);
cloudKeyPoses3D_->points[i].x = est.translation().x();
cloudKeyPoses3D_->points[i].y = est.translation().y();
cloudKeyPoses3D_->points[i].z = est.translation().z();
PosePoint &pose6D = cloudKeyPoses6D_->points[i];
pose6D.x = est.translation().x();
pose6D.y = est.translation().y();
pose6D.z = est.translation().z();
pose6D.roll = est.rotation().roll();
pose6D.pitch = est.rotation().pitch();
pose6D.yaw = est.rotation().yaw();
updatePath(pose6D);
}
loopIsClosed_ = false;
}
}
// 7) Detect loop closures. (Simple approach.)
void performLoopClosure()
{
if (cloudKeyPoses3D_->points.empty()) return;
// Make copies so we can do kdtree search safely
*cloudKeyPoses3Dcopy_ = *cloudKeyPoses3D_;
*cloudKeyPoses6Dcopy_ = *cloudKeyPoses6D_;
int loopKeyCur, loopKeyPre;
if (!detectLoopClosureDistance(&loopKeyCur, &loopKeyPre))
return;
Pose3 poseFrom = cloudKeyPoses6Dcopy_->points[loopKeyCur].toGtsamPose3();
Pose3 poseTo = cloudKeyPoses6Dcopy_->points[loopKeyPre].toGtsamPose3();
loopIndexQueue_.push_back(std::make_pair(loopKeyCur, loopKeyPre));
loopPoseQueue_.push_back(poseFrom.between(poseTo));
loopIndexContainer_[loopKeyCur] = loopKeyPre;
}
// 7a) The distance-based check for loop closure
bool detectLoopClosureDistance(int *latestID, int *closestID)
{
int loopKeyCur = cloudKeyPoses3Dcopy_->size() - 1;
int loopKeyPre = -1;
float searchRadius = 10.0f; // must be far in time for a loop
if (loopIndexContainer_.find(loopKeyCur) != loopIndexContainer_.end())
return false;
// Kdtree search
std::vector<int> pointSearchInd;
std::vector<float> pointSearchSqDis;
kdtreeHistoryKeyPoses_->setInputCloud(cloudKeyPoses3Dcopy_);
kdtreeHistoryKeyPoses_->radiusSearch(
cloudKeyPoses3Dcopy_->back(),
searchRadius,
pointSearchInd,
pointSearchSqDis,
5);
for (auto &id : pointSearchInd)
{
double poseTime = cloudKeyPoses6Dcopy_->points[id].time;
if (fabs(poseTime - timeLaserInfoCur_) > searchRadius)
{
loopKeyPre = id;
break;
}
}
if (loopKeyPre == -1 || loopKeyCur == loopKeyPre) return false;
*latestID = loopKeyCur;
*closestID = loopKeyPre;
return true;
}
// Utilities
void odomToTransform(const Eigen::Quaterniond &q, const Eigen::Vector3d &t)
{
// Convert to Euler
Eigen::Vector3d euler = q.toRotationMatrix().eulerAngles(2,1,0);
transformTobeMapped_[0] = euler[0];
transformTobeMapped_[1] = euler[1];
transformTobeMapped_[2] = euler[2];
transformTobeMapped_[3] = t.x();
transformTobeMapped_[4] = t.y();
transformTobeMapped_[5] = t.z();
// Save current as "curr"
currQuat_ = q;
currTrans_ = t;
}
void recordLastFrame()
{
lastQuat_ = currQuat_;
lastTrans_ = currTrans_;
}
void updatePath(const PosePoint &pose_in)
{
geometry_msgs::PoseStamped pose_stamped;
pose_stamped.header.stamp = ros::Time().fromSec(pose_in.time);
pose_stamped.header.frame_id = "camera_init";
pose_stamped.pose.position.x = pose_in.x;
pose_stamped.pose.position.y = pose_in.y;
pose_stamped.pose.position.z = pose_in.z;
tf::Quaternion q = tf::createQuaternionFromRPY(pose_in.roll, pose_in.pitch, pose_in.yaw);
pose_stamped.pose.orientation.x = q.x();
pose_stamped.pose.orientation.y = q.y();
pose_stamped.pose.orientation.z = q.z();
pose_stamped.pose.orientation.w = q.w();
globalPath_.poses.push_back(pose_stamped);
}
private:
// Replaces the old “g” globals
float transformTobeMapped_[6] = {0.f};
ros::Time timeLaserInfoStamp_;
double timeLaserInfoCur_ = 0.0;
bool loopIsClosed_ = false;
NonlinearFactorGraph tSAMgraph_;
Values initialEstimate_;
std::unique_ptr<ISAM2> iSam_; // was “ISAM2*”
Values iSamCurrentEstimate_;
ISAM2Params parameters_;
nav_msgs::Path globalPath_;
ros::Publisher pathPub_;
// Keyframe storage
// We store 3D positions (pcl::PointXYZ) plus the 6D PosePoint
pcl::PointCloud<pcl::PointXYZ>::Ptr cloudKeyPoses3D_ { new pcl::PointCloud<pcl::PointXYZ>() };
pcl::PointCloud<PosePoint>::Ptr cloudKeyPoses6D_ { new pcl::PointCloud<PosePoint>() };
pcl::PointCloud<pcl::PointXYZ>::Ptr cloudKeyPoses3Dcopy_ { new pcl::PointCloud<pcl::PointXYZ>() };
pcl::PointCloud<PosePoint>::Ptr cloudKeyPoses6Dcopy_ { new pcl::PointCloud<PosePoint>() };
pcl::KdTreeFLANN<pcl::PointXYZ>::Ptr kdtreeHistoryKeyPoses_{ new pcl::KdTreeFLANN<pcl::PointXYZ>() };
// Loop closure
std::map<int,int> loopIndexContainer_;
std::vector<std::pair<int,int>> loopIndexQueue_;
std::vector<Pose3> loopPoseQueue_;
// Buffers and locks
std::mutex mBuf_;
std::queue<nav_msgs::Odometry::ConstPtr> odometryBuf_;
// For storing last/current odometry states
Eigen::Quaterniond lastQuat_ = Eigen::Quaterniond(1,0,0,0);
Eigen::Vector3d lastTrans_{0,0,0};
Eigen::Quaterniond currQuat_ = Eigen::Quaterniond(1,0,0,0);
Eigen::Vector3d currTrans_{0,0,0};
};
// ----------------------------------------------------------------------------
// Minimal main
int main(int argc, char **argv)
{
ros::init(argc, argv, "keyFrame");
ros::NodeHandle nh;
Example example(nh);
// Threads
std::thread loopThread(&Example::loopClosureThread, &example);
std::thread runThread(&Example::runThread, &example);
// Subscriber
ros::Subscriber subOdom = nh.subscribe<nav_msgs::Odometry>(
"/odometry", 100, &Example::laserOdometryHandler, &example);
ros::spin();
loopThread.join();
runThread.join();
return 0;
} |
My last comment also still holds. Since this example will not compile you need to add info on what other packages are needed, and where to install them from. I’m unclear also on where the point clouds come from. This code seems to need more than just odometry, right? That could be explained as well in a comment block at the top. |
@Peppacbnb ping :-) |
Will close this PR for now. It would be great to have but it needs more explanation and some more work. |
I noticed that there are no examples in the examples section where laser SLAM uses iSAM2 for backend optimization. When I initially learned how to use iSAM2, I encountered significant difficulties. Therefore, I have combined my own learning experience with a simple and understandable code for constructing a factor graph and using iSAM2 for backend optimization to provide some assistance to other beginners.