Turkish LM Tuner is a library for fine-tuning Turkish language models on various NLP tasks. It is built on top of Hugging Face Transformers library. It supports finetuning with conditional generation and sequence classification tasks. The library is designed to be modular and extensible. It is easy to add new tasks and models. The library also provides data loaders for various Turkish NLP datasets.
You can install turkish-lm-tuner
via PyPI:
pip install turkish-lm-tuner
Alternatively, you can use the following command to install the library:
pip install git+https://github.com/boun-tabi-LMG/turkish-lm-tuner.git
Any Encoder or ConditionalGeneration model that is compatible with Hugging Face Transformers library can be used with Turkish LM Tuner. The following models are tested and supported.
Task | Datasets |
---|---|
Text Classification | Product Reviews, TTC4900, Tweet Sentiment |
Natural Language Inference | NLI_TR, SNLI_TR, MultiNLI_TR |
Semantic Textual Similarity | STSb_TR |
Named Entity Recognition | WikiANN, Milliyet NER |
Part-of-Speech Tagging | BOUN, IMST |
Text Summarization | TR News, MLSUM, Combined TR News and MLSUM |
Title Generation | TR News, MLSUM, Combined TR News and MLSUM |
Paraphrase Generation | OpenSubtitles, Tatoeba, TED Talks |
The tutorials in the documentation can help you get started with turkish-lm-tuner
.
from turkish_lm_tuner import DatasetProcessor, TrainerForConditionalGeneration
dataset_name = "tr_news"
task = "summarization"
task_format="conditional_generation"
model_name = "boun-tabi-LMG/TURNA"
max_input_length = 764
max_target_length = 128
dataset_processor = DatasetProcessor(
dataset_name=dataset_name, task=task, task_format=task_format, task_mode='',
tokenizer_name=model_name, max_input_length=max_input_length, max_target_length=max_target_length
)
train_dataset = dataset_processor.load_and_preprocess_data(split='train')
eval_dataset = dataset_processor.load_and_preprocess_data(split='validation')
test_dataset = dataset_processor.load_and_preprocess_data(split="test")
training_params = {
'num_train_epochs': 10,
'per_device_train_batch_size': 4,
'per_device_eval_batch_size': 4,
'output_dir': './',
'evaluation_strategy': 'epoch',
'save_strategy': 'epoch',
'predict_with_generate': True
}
optimizer_params = {
'optimizer_type': 'adafactor',
'scheduler': False,
}
model_trainer = TrainerForConditionalGeneration(
model_name=model_name, task=task,
optimizer_params=optimizer_params,
training_params=training_params,
model_save_path="turna_summarization_tr_news",
max_input_length=max_input_length,
max_target_length=max_target_length,
postprocess_fn=dataset_processor.dataset.postprocess_data
)
trainer, model = model_trainer.train_and_evaluate(train_dataset, eval_dataset, test_dataset)
model.save_pretrained(model_save_path)
dataset_processor.tokenizer.save_pretrained(model_save_path)
from turkish_lm_tuner import DatasetProcessor, EvaluatorForConditionalGeneration
dataset_name = "tr_news"
task = "summarization"
task_format="conditional_generation"
model_name = "boun-tabi-LMG/TURNA"
task_mode = ''
max_input_length = 764
max_target_length = 128
dataset_processor = DatasetProcessor(
dataset_name, task, task_format, task_mode,
model_name, max_input_length, max_target_length
)
test_dataset = dataset_processor.load_and_preprocess_data(split="test")
test_params = {
'per_device_eval_batch_size': 4,
'output_dir': './',
'predict_with_generate': True
}
model_path = "turna_tr_news_summarization"
generation_params = {
'num_beams': 4,
'length_penalty': 2.0,
'no_repeat_ngram_size': 3,
'early_stopping': True,
'max_length': 128,
'min_length': 30,
}
evaluator = EvaluatorForConditionalGeneration(
model_path, model_name, task, max_input_length, max_target_length, test_params,
generation_params, dataset_processor.dataset.postprocess_data
)
results = evaluator.evaluate_model(test_dataset)
print(results)
If you use this repository, please cite the following related paper:
@inproceedings{uludogan-etal-2024-turna,
title = "{TURNA}: A {T}urkish Encoder-Decoder Language Model for Enhanced Understanding and Generation",
author = {Uludo{\u{g}}an, G{\"o}k{\c{c}}e and
Balal, Zeynep and
Akkurt, Furkan and
Turker, Meliksah and
Gungor, Onur and
{\"U}sk{\"u}darl{\i}, Susan},
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.600",
doi = "10.18653/v1/2024.findings-acl.600",
pages = "10103--10117",
}
Note that all datasets belong to their respective owners. If you use the datasets provided by this library, please cite the original source.
This code base is licensed under the MIT license. See LICENSE for details.