This is the official PyTorch implementation of the SeCo paper:
@article{manas2021seasonal,
title={Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data},
author={Ma{\~n}as, Oscar and Lacoste, Alexandre and Giro-i-Nieto, Xavier and Vazquez, David and Rodriguez, Pau},
journal={arXiv preprint arXiv:2103.16607},
year={2021}
}
Install Python dependencies by running:
pip install -r requirements.txt
First, obtain Earth Engine authentication credentials by following the installation instructions.
Then, to collect and download a new SeCo dataset from a random set of Earth locations, run:
python datasets/seco_downloader.py \
--save_path [folder where data will be downloaded] \
--num_locations 200000
To do unsupervised pre-training of a ResNet-18 model on the SeCo dataset, run:
python main_pretrain.py \
--data_dir datasets/seco_1m --data_mode seco \
--base_encoder resnet18
With a pre-trained SeCo model, to train a supervised linear classifier on 10% of the BigEarthNet training set in a 4-GPU machine, run:
python main_bigearthnet.py \
--gpus 4 --accelerator dp --batch_size 1024 \
--data_dir datasets/bigearthnet --train_frac 0.1 \
--backbone_type pretrain --ckpt_path checkpoints/seco_resnet18_1m.ckpt \
--freeze_backbone --learning_rate 1e-3
To train a supervised linear classifier on EuroSAT from a pre-trained SeCo model, run:
python main_eurosat.py \
--data_dir datasets/eurosat \
--backbone_type pretrain --ckpt_path checkpoints/seco_resnet18_1m.ckpt
To train a supervised change detection model on OSCD from a pre-trained SeCo model, run:
python main_oscd.py \
--data_dir datasets/oscd \
--backbone_type pretrain --ckpt_path checkpoints/seco_resnet18_1m.ckpt
Our collected SeCo datasets can be downloaded as following:
#images | RGB preview | size | link | md5 |
---|---|---|---|---|
100K | ✓ | 7.3 GB | download | ebf2d5e03adc6e657f9a69a20ad863e0 |
~1M | 36.3 GB | download | 187963d852d4d3ce6637743ec3a4bd9e |
Our pre-trained SeCo models can be downloaded as following:
dataset | architecture | link | md5 |
---|---|---|---|
SeCo-100K | ResNet-18 | download | dcf336be31f6c6b0e77dcb6cc958fca8 |
SeCo-1M | ResNet-18 | download | 53d5c41d0f479bdfd31d6746ad4126db |
SeCo-100K | ResNet-50 | download | 9672c303f6334ef816494c13b9d05753 |
SeCo-1M | ResNet-50 | download | 7b09c54aed33c0c988b425c54f4ef948 |