Skip to content

chanshing/ressim

Repository files navigation

ressim: reservoir simulation in python

Reservoir simulation in Python. It currently supports 2D rectangular grids and isotropic permeability.

Modules

  • ressim.py: main module containing classes to define the grid, and to model and solve the pressure and saturation equations.

  • utils.py: module containing useful function definitions, e.g. linear and quadratic mobility functions, fractional flow function, etc.

Usage

See main_*.py for examples.

ressim.py

A module for reservoir simulation in Python.

Grid

Grid(self, nx, ny, lx=1.0, ly=1.0)

A class to define a rectangular grid. Given nx, ny, lx, ly, it maintains an update of attributes vol, dx, dy, ncell, shape.

Attributes

  • nx, ny: int Grid resolution.

  • lx, ly: float Grid physical dimensions. Default is lx=1.0, ly=1.0, i.e. unit square.

  • vol: float Cell volume.

  • dx, dy: float Cell dimensions.

  • ncell: int Number of cells.

  • shape: int Grid shape, i.e. (ny, nx).

PressureEquation

PressureEquation(self, grid=None, q=None, k=None, diri=None, lamb_fn=None, s=None)

A class to model and solve the pressure equation,

pressure

with no-flow boundary conditions (closed reservoir).

Attributes

  • grid: Grid Simulation grid.

  • q: ndarray, shape (ny, nx) | (ny*nx,) Integrated source term.

  • k: ndarray, shape (ny, nx) Permeability

  • diri: list of (int, float) tuples Dirichlet boundary conditions, e.g. [(i1, val1), (i2, val2), ...] means pressure values val1 at cell i1, val2 at cell i2, etc. Defaults to [(ny*nx/2, 0.0)], i.e. zero pressure at center of the grid.

  • lamb_fn: callable Total mobility function lamb_fn(s)

  • s: ndarray, (ny, nx) | (ny*nx,) Water saturation

  • p: ndarray, (ny, nx) Pressure

  • v: dict of ndarray

    • 'x' : ndarray, shape (ny, nx+1) Flux in x-direction
    • 'y' : ndarray, shape (ny+1, nx) Flux in y-direction

Methods

  • step(): Solve the pressure equation to obtain pressure and flux. Update self.p and self.v.

  • solve(mat, q): Method to solve the system of linear equations. Default is scipy.sparse.linalg.spsolve(mat, q). You can override this method to use a different solver.

SaturationEquation

SaturationEquation(self, grid=None, q=None, phi=None, s=None, f_fn=None, v=None, df_fn=None)

A class to model and solve the (water) saturation equation under water injection,

Water saturation

Attributes

  • grid: Grid Simulation grid

  • q: ndarray, (ny, nx) | (ny*nx,) Integrated source term.

  • phi: ndarray, (ny, nx) | (ny*nx,) Porosity

  • f_fn: callable Water fractional flow function f_fn(s)

  • v: dict of ndarray

    • 'x' : ndarray, (ny, nx+1) Flux in x-direction
    • 'y' : ndarray, (ny+1, nx) Flux in y-direction
  • df_fn: callable (optional) Derivative (element-wise) of water fractional flow function df_fn(s). It is used to compute the jacobian of the residual function. If None, the jacobian is approximated by the solver (which can be slow).

  • s : ndarray, (ny, nx) | (ny*nx,) Water saturation

Methods

  • step(dt): Solve saturation forward in time by dt. Update self.s.

  • solve(residual, s0, residual_jac=None): Method to perform the minimization of the residual. Default is scipy.optimize.nonlin.nonlin_solve(residual, s0, jacobian=residual_jac). If residual_jac is None, defaults to 'krylov'. You can override this method to use a different solver.

utils.py

Useful functions for reservoir simulation tasks.

linear_mobility

linear_mobility(s, mu_w, mu_o, s_wir, s_oir, deriv=False)

Function to compute water and oil mobility with a linear model.

Parameters

  • s: ndarray, (ny, nx) | (ny*nx,) Water saturation

  • mu_w: float Viscosity of water

  • mu_o: float Viscosity of oil

  • s_wir: float Irreducible water saturation

  • s_oir: float Irreducible oil saturation

  • deriv: bool If True, also return derivatives

Returns

if deriv=False:

  • lamb_w, lamb_o: ndarray, (ny, nx) | (ny*nx,)
    • lamb_w: water mobility
    • lamb_o: oil mobility

if deriv=True:

  • lamb_w, lamb_o, dlamb_w, dlamb_o: ndarray, (ny, nx) | (ny*nx,)
    • lamb_w: water mobility
    • lamb_o: oil mobility
    • dlamb_w: derivative of water mobility
    • dlamb_o: derivative of oil mobility

quadratic_mobility

quadratic_mobility(s, mu_w, mu_o, s_wir, s_oir, deriv=False)

Function to compute water and oil mobility with a quadratic model.

Parameters

  • s: ndarray, (ny, nx) | (ny*nx,) Water saturation

  • mu_w: float Viscosity of water

  • mu_o: float Viscosity of oil

  • s_wir: float Irreducible water saturation

  • s_oir: float Irreducible oil saturation

  • deriv: bool If True, also return derivatives

Returns

if deriv=False:

  • lamb_w, lamb_o: ndarray, (ny, nx) | (ny*nx,)
    • lamb_w: water mobility
    • lamb_o: oil mobility

if deriv=True:

  • lamb_w, lamb_o, dlamb_w, dlamb_o: ndarray, (ny, nx) | (ny*nx,)
    • lamb_w: water mobility
    • lamb_o: oil mobility
    • dlamb_w: derivative of water mobility
    • dlamb_o: derivative of oil mobility

f_fn

f_fn(s, mobi_fn)

Water fractional flow function.

Parameters

  • s: ndarray, (ny, nx) | (ny*nx,) Water saturation

  • mobi_fn: callable Mobility function lamb_w, lamb_o = mobi_fn(s) where:

    • lamb_w: water mobility
    • lamb_o: oil mobility

Returns

  • ndarray, (ny, nx) | (ny*nx,) Fractional flow

df_fn

df_fn(s, mobi_fn)

Derivative function (element-wise) of water fractional flow.

Parameters

  • s: ndarray, (ny, nx) | (ny*nx,) Water saturation

  • mobi_fn: callable Mobility function lamb_w, lamb_o, dlamb_w, dlamb_o = mobi_fn(s, deriv=True) where:

    • lamb_w: water mobility
    • lamb_o: oil mobility
    • dlamb_w: derivative of water mobility
    • dlamb_o: derivative of oil mobility

Returns

  • ndarray, (ny, nx) | (ny*nx,) Fractional flow derivative

lamb_fn

lamb_fn(s, mobi_fn)

Total mobility function.

Parameters

  • s: ndarray, (ny, nx) | (ny*nx,) Water saturation

  • mobi_fn: callable Mobility function lamb_w, lamb_o = mobi_fn(s) where:

    • lamb_w: water mobility
    • lamb_o: oil mobility

Returns

  • ndarray, (ny, nx) | (ny*nx,) Total mobility

References

Aarnes J.E., Gimse T., Lie KA. (2007) An Introduction to the Numerics of Flow in Porous Media using Matlab. In: Hasle G., Lie KA., Quak E. (eds) Geometric Modelling, Numerical Simulation, and Optimization. Springer, Berlin, Heidelberg

About

Reservoir simulation in Python

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages