-
Notifications
You must be signed in to change notification settings - Fork 24
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added a test for the ExcitationLine model.
- Loading branch information
Showing
1 changed file
with
164 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,164 @@ | ||
# Copyright 2016-2023 Euratom | ||
# Copyright 2016-2023 United Kingdom Atomic Energy Authority | ||
# Copyright 2016-2023 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas | ||
# | ||
# Licensed under the EUPL, Version 1.1 or – as soon they will be approved by the | ||
# European Commission - subsequent versions of the EUPL (the "Licence"); | ||
# You may not use this work except in compliance with the Licence. | ||
# You may obtain a copy of the Licence at: | ||
# | ||
# https://joinup.ec.europa.eu/software/page/eupl5 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software distributed | ||
# under the Licence is distributed on an "AS IS" basis, WITHOUT WARRANTIES OR | ||
# CONDITIONS OF ANY KIND, either express or implied. | ||
# | ||
# See the Licence for the specific language governing permissions and limitations | ||
# under the Licence. | ||
|
||
import unittest | ||
|
||
import numpy as np | ||
|
||
from raysect.core import Point3D, Vector3D, translate | ||
from raysect.optical import World, Spectrum, Ray | ||
|
||
from cherab.core.atomic import Line, AtomicData, ImpactExcitationPEC, RecombinationPEC, ThermalCXPEC | ||
from cherab.core.atomic import deuterium, carbon | ||
from cherab.tools.plasmas.slab import build_constant_slab_plasma | ||
from cherab.core.model import ExcitationLine, RecombinationLine, ThermalCXLine, GaussianLine, ZeemanTriplet | ||
|
||
|
||
class ConstantImpactExcitationPEC(ImpactExcitationPEC): | ||
""" | ||
Constant electron impact excitation PEC for test purpose. | ||
""" | ||
|
||
def __init__(self, value): | ||
self.value = value | ||
|
||
def evaluate(self, density, temperature): | ||
|
||
return self.value | ||
|
||
|
||
class ConstantRecombinationPEC(RecombinationPEC): | ||
""" | ||
Constant recombination PEC for test purpose. | ||
""" | ||
|
||
def __init__(self, value): | ||
self.value = value | ||
|
||
def evaluate(self, density, temperature): | ||
|
||
return self.value | ||
|
||
|
||
class ConstantThermalCXPEC(ThermalCXPEC): | ||
""" | ||
Constant recombination PEC for test purpose. | ||
""" | ||
|
||
def __init__(self, value): | ||
self.value = value | ||
|
||
def evaluate(self, electron_density, electron_temperature, donor_temperature): | ||
|
||
return self.value | ||
|
||
|
||
class TestAtomicData(AtomicData): | ||
"""Fake atomic data for test purpose.""" | ||
|
||
def impact_excitation_pec(self, ion, charge, transition): | ||
|
||
return ConstantImpactExcitationPEC(1.4e-39) | ||
|
||
def recombination_pec(self, ion, charge, transition): | ||
|
||
return ConstantRecombinationPEC(8.e-41) | ||
|
||
def thermal_cx_pec(self, donor_ion, donor_charge, receiver_ion, receiver_charge, transition): | ||
|
||
return ConstantThermalCXPEC(1.2e-46) | ||
|
||
def wavelength(self, ion, charge, transition): | ||
|
||
return 529.27 | ||
|
||
|
||
class TestExcitationLine(unittest.TestCase): | ||
|
||
world = World() | ||
|
||
atomic_data = TestAtomicData() | ||
|
||
plasma_species = [(carbon, 5, 2.e18, 200., Vector3D(0, 0, 0))] | ||
slab_length = 1. | ||
plasma = build_constant_slab_plasma(length=slab_length, width=1, height=1, electron_density=1e19, electron_temperature=1000., | ||
plasma_species=plasma_species, b_field=Vector3D(0, 10., 0)) | ||
plasma.atomic_data = atomic_data | ||
plasma.parent = world | ||
|
||
def test_default_lineshape(self): | ||
# setting up the model | ||
line = Line(carbon, 5, (8, 7)) | ||
self.plasma.models = [ExcitationLine(line)] | ||
wavelength = self.atomic_data.wavelength(line.element, line.charge, line.transition) | ||
|
||
# observing | ||
origin = Point3D(1.5, 0, 0) | ||
direction = Vector3D(-1, 0, 0) | ||
ray = Ray(origin=origin, direction=direction, | ||
min_wavelength=wavelength - 1.5, max_wavelength=wavelength + 1.5, bins=512) | ||
excit_spectrum = ray.trace(self.world) | ||
|
||
# validating | ||
ne = self.plasma.electron_distribution.density(0.5, 0, 0) | ||
te = self.plasma.electron_distribution.effective_temperature(0.5, 0, 0) | ||
rate = self.atomic_data.impact_excitation_pec(line.element, line.charge, line.transition)(ne, te) | ||
target_species = self.plasma.composition.get(line.element, line.charge) | ||
ni = target_species.distribution.density(0.5, 0, 0) # constant slab | ||
radiance = 0.25 / np.pi * rate * ni * ne * self.slab_length | ||
|
||
gaussian_line = GaussianLine(line, wavelength, target_species, self.plasma) | ||
spectrum = Spectrum(ray.min_wavelength, ray.max_wavelength, ray.bins) | ||
spectrum = gaussian_line.add_line(radiance, Point3D(0.5, 0, 0), direction, spectrum) | ||
|
||
for i in range(ray.bins): | ||
self.assertAlmostEqual(excit_spectrum.samples[i], spectrum.samples[i], delta=1e-8, | ||
msg='ExcitationLine model gives a wrong value at {} nm.'.format(spectrum.wavelengths[i])) | ||
|
||
def test_custom_lineshape(self): | ||
# setting up the model | ||
line = Line(carbon, 5, (8, 7)) | ||
self.plasma.models = [ExcitationLine(line, lineshape=ZeemanTriplet)] | ||
wavelength = self.atomic_data.wavelength(line.element, line.charge, line.transition) | ||
|
||
# observing | ||
origin = Point3D(1.5, 0, 0) | ||
direction = Vector3D(-1, 0, 0) | ||
ray = Ray(origin=origin, direction=direction, | ||
min_wavelength=wavelength - 1.5, max_wavelength=wavelength + 1.5, bins=512) | ||
excit_spectrum = ray.trace(self.world) | ||
|
||
# validating | ||
ne = self.plasma.electron_distribution.density(0.5, 0, 0) | ||
te = self.plasma.electron_distribution.effective_temperature(0.5, 0, 0) | ||
rate = self.atomic_data.impact_excitation_pec(line.element, line.charge, line.transition)(ne, te) | ||
target_species = self.plasma.composition.get(line.element, line.charge) | ||
ni = target_species.distribution.density(0.5, 0, 0) # constant slab | ||
radiance = 0.25 / np.pi * rate * ni * ne * self.slab_length | ||
|
||
zeeman_line = ZeemanTriplet(line, wavelength, target_species, self.plasma) | ||
spectrum = Spectrum(ray.min_wavelength, ray.max_wavelength, ray.bins) | ||
spectrum = zeeman_line.add_line(radiance, Point3D(0.5, 0, 0), direction, spectrum) | ||
|
||
for i in range(ray.bins): | ||
self.assertAlmostEqual(excit_spectrum.samples[i], spectrum.samples[i], delta=1e-8, | ||
msg='ExcitationLine model gives a wrong value at {} nm.'.format(spectrum.wavelengths[i])) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |