Skip to content

Commit

Permalink
Merge pull request #319 from Lnaden/revert_returns
Browse files Browse the repository at this point in the history
Make all outputs default to 3.0.3 behavior
  • Loading branch information
jchodera authored Dec 2, 2019
2 parents d1c18f3 + d760a2b commit 1d14e80
Show file tree
Hide file tree
Showing 14 changed files with 262 additions and 152 deletions.
5 changes: 3 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -45,14 +45,15 @@ To analyze this data, we first initialize the `MBAR` object:
```
Estimating dimensionless free energy differences between the sampled thermodynamic states and their associated uncertainties (standard errors) simply requires a call to `getFreeEnergyDifferences()`:
```python
>>> results = mbar.getFreeEnergyDifferences()
>>> results = mbar.getFreeEnergyDifferences(return_dict=True)
```
Here `results` is a dictionary with keys `Deltaf_ij`, `dDeltaf`, and `Theta`. `Deltaf_ij[i,j]` is the matrix of dimensionless free energy differences `f_j - f_i`, `dDeltaf_ij[i,j]` is the matrix of standard errors in this matrices estimate, and `Theta` is a covariance matrix that can be used to propagate error into quantities derived from the free energies.
By default, `return_dict` is `False` and the return will be a tuple.

Expectations and associated uncertainties can easily be estimated for observables `A(x)` for all states:
```python
>>> A_kn = x_kn # use position of harmonic oscillator as observable
>>> results = mbar.computeExpectations(A_kn)
>>> results = mbar.computeExpectations(A_kn, return_dict=True)
```
where `results` is a dictionary with keys `mu`, `sigma`, and `Theta`, where `mu[i]` is the array of the estimate for the average of the observable for in state i, `sigma[i]` is the estimated standard deviation of the `mu` estimates, and `Theta[i,j]` is the covarinace matrix of the log weights.

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -211,9 +211,6 @@ def construct_nonuniform_bins(x_n, nbins):
# Compute PMF in unbiased potential (in units of kT).
print("Computing PMF...")
(f_i, df_i) = mbar.computePMF(u_kn, bin_kn, nbins)
results = mbar.computePMF(u_kn, bin_kn, nbins)
f_i = results['f_i']
df_i = results['df_i']
# compute estimate of PMF including Jacobian term
pmf_i = f_i + numpy.log(bin_width_i)
# Write out unbiased estimate of PMF
Expand All @@ -237,7 +234,7 @@ def construct_nonuniform_bins(x_n, nbins):
# compute observed and expected histograms at each state
for l in range(0,K):
# compute PMF at state l
results = mbar.computePMF(u_kln[:,l,:], bin_kn, nbins)
results = mbar.computePMF(u_kln[:,l,:], bin_kn, nbins, return_dict=True)
f_i = results['f_i']
df_i = results['df_i']
# compute estimate of PMF including Jacobian term
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -135,7 +135,7 @@

# Initialize the MBAR class, determining the free energies.
mbar = MBAR(u_kln, N_k, relative_tolerance=1.0e-10,verbose=False) # use fast Newton-Raphson solver
results = mbar.getFreeEnergyDifferences()
results = mbar.getFreeEnergyDifferences(return_dict=True)
Deltaf_ij_estimated = results['Delta_f']
dDeltaf_ij_estimated = results['dDelta_f']

Expand Down
35 changes: 18 additions & 17 deletions examples/harmonic-oscillators/harmonic-oscillators.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,8 @@
from __future__ import print_function
import sys
import numpy
from pymbar import testsystems, EXP, EXPGauss, BAR, MBAR, utils
from pymbar import testsystems, EXP, EXPGauss, BAR, MBAR
from pymbar.utils import ParameterError

#=============================================================================================
# HELPER FUNCTIONS
Expand Down Expand Up @@ -142,7 +143,7 @@ def GetAnalytical(beta,K,O,observables):
print(" Testing getFreeEnergyDifferences ")
print("=============================================")

results = mbar.getFreeEnergyDifferences()
results = mbar.getFreeEnergyDifferences(return_dict=True)
Delta_f_ij_estimated = results['Delta_f']
dDelta_f_ij_estimated = results['dDelta_f']

Expand Down Expand Up @@ -174,7 +175,7 @@ def GetAnalytical(beta,K,O,observables):
k1 = nonzero_indices[i+1]
w_F = u_kln[k, k1, 0:N_k[k]] - u_kln[k, k, 0:N_k[k]] # forward work
w_R = u_kln[k1, k, 0:N_k[k1]] - u_kln[k1, k1, 0:N_k[k1]] # reverse work
results = BAR(w_F, w_R)
results = BAR(w_F, w_R, return_dict=True)
df_bar = results['Delta_f']
ddf_bar = results['dDelta_f']
bar_analytical = (f_k_analytical[k1]-f_k_analytical[k])
Expand All @@ -190,7 +191,7 @@ def GetAnalytical(beta,K,O,observables):
for k in range(K-1):
if N_k[k] != 0:
w_F = u_kln[k, k+1, 0:N_k[k]] - u_kln[k, k, 0:N_k[k]] # forward work
results = EXP(w_F)
results = EXP(w_F, return_dict=True)
df_exp = results['Delta_f']
ddf_exp = results['dDelta_f']
exp_analytical = (f_k_analytical[k+1]-f_k_analytical[k])
Expand All @@ -202,7 +203,7 @@ def GetAnalytical(beta,K,O,observables):
for k in range(1,K):
if N_k[k] != 0:
w_R = u_kln[k, k-1, 0:N_k[k]] - u_kln[k, k, 0:N_k[k]] # reverse work
(df_exp,ddf_exp) = EXP(w_R)
(df_exp,ddf_exp) = EXP(w_R, return_dict=True)
df_exp = -results['Delta_f']
ddf_exp = results['dDelta_f']
exp_analytical = (f_k_analytical[k]-f_k_analytical[k-1])
Expand All @@ -218,7 +219,7 @@ def GetAnalytical(beta,K,O,observables):
for k in range(K-1):
if N_k[k] != 0:
w_F = u_kln[k, k+1, 0:N_k[k]] - u_kln[k, k, 0:N_k[k]] # forward work
results = EXPGauss(w_F)
results = EXPGauss(w_F, return_dict=True)
df_gauss = results['Delta_f']
ddf_gauss = results['dDelta_f']
gauss_analytical = (f_k_analytical[k+1]-f_k_analytical[k])
Expand All @@ -230,7 +231,7 @@ def GetAnalytical(beta,K,O,observables):
for k in range(1,K):
if N_k[k] != 0:
w_R = u_kln[k, k-1, 0:N_k[k]] - u_kln[k, k, 0:N_k[k]] # reverse work
results = EXPGauss(w_R)
results = EXPGauss(w_R, return_dict=True)
df_gauss = results['Delta_f']
ddf_gauss = results['dDelta_f']
gauss_analytical = (f_k_analytical[k]-f_k_analytical[k-1])
Expand Down Expand Up @@ -286,7 +287,7 @@ def GetAnalytical(beta,K,O,observables):
for k in range(0,K):
A_kn[k,0:N_k[k]] = x_kn[k,0:N_k[k]]**2

results = mbar.computeExpectations(A_kn, state_dependent = state_dependent)
results = mbar.computeExpectations(A_kn, state_dependent = state_dependent, return_dict=True)
A_k_estimated = results['mu']
dA_k_estimated = results['sigma']

Expand Down Expand Up @@ -340,7 +341,7 @@ def GetAnalytical(beta,K,O,observables):
stdevs = numpy.abs(As_k_error[Nk_ne_zero]/dAs_k_estimated[Nk_ne_zero])
print(stdevs)

results = mbar.computeExpectations(A_kn, state_dependent = state_dependent, output = 'differences')
results = mbar.computeExpectations(A_kn, state_dependent = state_dependent, output = 'differences', return_dict=True)
A_kl_estimated = results['mu']
dA_kl_estimated = results['sigma']

Expand Down Expand Up @@ -383,7 +384,7 @@ def GetAnalytical(beta,K,O,observables):
for i,observe in enumerate(observables_single):
A_ikn[i,:,:] = A_kn_all[observe]
for i in range(K):
results = mbar.computeMultipleExpectations(A_ikn, u_kln[:,i,:], compute_covariance=True)
results = mbar.computeMultipleExpectations(A_ikn, u_kln[:,i,:], compute_covariance=True, return_dict=True)
A_i = results['mu']
dA_ij = results['sigma']
Ca_ij = results['covariances']
Expand All @@ -398,7 +399,7 @@ def GetAnalytical(beta,K,O,observables):
print(" Testing computeEntropyAndEnthalpy")
print("============================================")

results = mbar.computeEntropyAndEnthalpy(u_kn = u_kln, verbose = True)
results = mbar.computeEntropyAndEnthalpy(u_kn = u_kln, verbose = True, return_dict=True)
Delta_f_ij = results['Delta_f']
dDelta_f_ij = results['dDelta_f']
Delta_u_ij = results['Delta_u']
Expand Down Expand Up @@ -467,7 +468,7 @@ def GetAnalytical(beta,K,O,observables):
for l in range(L):
unew_kln[k,l,0:N_k[k]] = (K_extra[l]/2.0) * (x_kn[k,0:N_k[k]]-O_extra[l])**2

results = mbar.computePerturbedFreeEnergies(unew_kln)
results = mbar.computePerturbedFreeEnergies(unew_kln, return_dict=True)
Delta_f_ij_estimated = results['Delta_f']
dDelta_f_ij_estimated = results['dDelta_f']

Expand Down Expand Up @@ -519,7 +520,7 @@ def GetAnalytical(beta,K,O,observables):
A_kn = A_kn_all['position^2']

A_k_estimated, dA_k_estimated
results = mbar.computeExpectations(A_kn,unew_kln[:,[nth],:],state_dependent=state_dependent)
results = mbar.computeExpectations(A_kn,unew_kln[:,[nth],:],state_dependent=state_dependent, return_dict=True)
A_k_estimated = results['mu']
dA_k_estimated = results['sigma']
# need to additionally transform to get the square root
Expand All @@ -543,7 +544,7 @@ def GetAnalytical(beta,K,O,observables):
print(" Testing computeOverlap ")
print("============================================")

results = mbar.computeOverlap()
results = mbar.computeOverlap(return_dict=True)
O = results['scalar']
O_i = results['eigenvalues']
O_ij = results['matrix']
Expand Down Expand Up @@ -577,7 +578,7 @@ def GetAnalytical(beta,K,O,observables):
print("so standard (scaled) results should be very close to MBAR results.")
print("No standard estimate exists for states that are not sampled.")
A_kn = x_kn
results = mbar.computeExpectations(A_kn)
results = mbar.computeExpectations(A_kn, return_dict=True)
val_mbar = results['mu']
err_mbar = results['sigma']
err_standard = numpy.zeros([K],dtype = numpy.float64)
Expand Down Expand Up @@ -744,7 +745,7 @@ def generate_pmf_data(ndim=1, nbinsperdim=15, nsamples = 1000, K0=20.0, Ku = 100

# Compute PMF.
print("Computing PMF ...")
results = mbar.computePMF(u_n, bin_n, nbins, uncertainties = 'from-specified', pmf_reference = zeroindex)
results = mbar.computePMF(u_n, bin_n, nbins, uncertainties = 'from-specified', pmf_reference = zeroindex, return_dict=True)
f_i = results['f_i']
df_i = results['df_i']

Expand Down Expand Up @@ -833,7 +834,7 @@ def generate_pmf_data(ndim=1, nbinsperdim=15, nsamples = 1000, K0=20.0, Ku = 100
# Compute PMF.
print("Computing PMF ...")
[f_i, df_i]
results = mbar.computePMF(u_n, bin_n, nbins, uncertainties = 'from-specified', pmf_reference = zeroindex)
results = mbar.computePMF(u_n, bin_n, nbins, uncertainties = 'from-specified', pmf_reference = zeroindex, return_dict=True)
f_i = results['f_i']
df_i = results['df_i']

Expand Down
8 changes: 4 additions & 4 deletions examples/heat-capacity/heat-capacity.py
Original file line number Diff line number Diff line change
Expand Up @@ -281,23 +281,23 @@ def PrintResults(string,E,dE,Cv,dCv,types):
E_kln = u_kln # not a copy, we are going to write over it, but we don't need it any more.
for k in range(K):
E_kln[:,k,:]*=beta_k[k]**(-1) # get the 'unreduced' potential -- we can't take differences of reduced potentials because the beta is different; math is much more confusing with derivatives of the reduced potentials.
results = mbar.computeExpectations(E_kln, state_dependent = True)
results = mbar.computeExpectations(E_kln, state_dependent = True, return_dict=True)
E_expect = results['mu']
dE_expect = results['sigma']
allE_expect[:,n] = E_expect[:]

# expectations for the differences, which we need for numerical derivatives
results = mbar.computeExpectations(E_kln,output='differences', state_dependent = True)
results = mbar.computeExpectations(E_kln,output='differences', state_dependent = True, return_dict=True)
DeltaE_expect = results['mu']
dDeltaE_expect = results['sigma']
print("Computing Expectations for E^2...")

results = mbar.computeExpectations(E_kln**2, state_dependent = True)
results = mbar.computeExpectations(E_kln**2, state_dependent = True, return_dict=True)
E2_expect = results['mu']
dE2_expect = results['sigma']
allE2_expect[:,n] = E2_expect[:]

results = mbar.getFreeEnergyDifferences()
results = mbar.getFreeEnergyDifferences(return_dict=True)
df_ij = results['Delta_f']
ddf_ij = results['dDelta_f']

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -293,7 +293,7 @@ def read_file(filename):
# f_i[i] is the dimensionless free energy of bin i (in kT) at the temperature of interest
# df_i[i,j] is an estimate of the covariance in the estimate of (f_i[i] - f_j[j], with reference
# the lowest free energy state.
results = mbar.computePMF(u_kn, bin_kn, nbins, uncertainties='from-lowest')
results = mbar.computePMF(u_kn, bin_kn, nbins, uncertainties='from-lowest', return_dict=True)
f_i = results['f_i']
df_i = results['df_i']

Expand Down
2 changes: 1 addition & 1 deletion examples/umbrella-sampling-pmf/umbrella-sampling.py
Original file line number Diff line number Diff line change
Expand Up @@ -147,7 +147,7 @@
mbar = pymbar.MBAR(u_kln, N_k, verbose = True)

# Compute PMF in unbiased potential (in units of kT).
results = mbar.computePMF(u_kn, bin_kn, nbins)
results = mbar.computePMF(u_kn, bin_kn, nbins, return_dict=True)
f_i = results['f_i']
df_i = results['df_i']

Expand Down
40 changes: 25 additions & 15 deletions pymbar/bar.py
Original file line number Diff line number Diff line change
Expand Up @@ -147,7 +147,7 @@ def BARzero(w_F, w_R, DeltaF):
return fzero


def BAR(w_F, w_R, DeltaF=0.0, compute_uncertainty=True, uncertainty_method='BAR',maximum_iterations=500, relative_tolerance=1.0e-12, verbose=False, method='false-position', iterated_solution=True):
def BAR(w_F, w_R, DeltaF=0.0, compute_uncertainty=True, uncertainty_method='BAR',maximum_iterations=500, relative_tolerance=1.0e-12, verbose=False, method='false-position', iterated_solution=True, return_dict=False):
"""Compute free energy difference using the Bennett acceptance ratio (BAR) method.
Parameters
Expand Down Expand Up @@ -176,16 +176,18 @@ def BAR(w_F, w_R, DeltaF=0.0, compute_uncertainty=True, uncertainty_method='BAR'
iterated_solution : bool, optional, default=True
whether to fully solve the optimized BAR equation to consistency, or to stop after one step, to be
equivalent to transition matrix sampling.
return_dict : bool, default False
If true, returns are a dict, else they are a tuple
Returns
-------
result_vals : dictionary
Possible keys in the result_vals dictionary
'Delta_f' : float
Free energy difference
If return_dict, key is 'Delta_f'
'dDelta_f': float
Estimated standard deviation of free energy difference
If return_dict, key is 'dDelta_f'
References
----------
Expand All @@ -203,15 +205,15 @@ def BAR(w_F, w_R, DeltaF=0.0, compute_uncertainty=True, uncertainty_method='BAR'
>>> from pymbar import testsystems
>>> [w_F, w_R] = testsystems.gaussian_work_example(mu_F=None, DeltaF=1.0, seed=0)
>>> results = BAR(w_F, w_R)
>>> results = BAR(w_F, w_R, return_dict=True)
>>> print('Free energy difference is {:.3f} +- {:.3f} kT'.format(results['Delta_f'], results['dDelta_f']))
Free energy difference is 1.088 +- 0.050 kT
Test completion of various other schemes.
>>> results = BAR(w_F, w_R, method='self-consistent-iteration')
>>> results = BAR(w_F, w_R, method='false-position')
>>> results = BAR(w_F, w_R, method='bisection')
>>> results = BAR(w_F, w_R, method='self-consistent-iteration', return_dict=True)
>>> results = BAR(w_F, w_R, method='false-position', return_dict=True)
>>> results = BAR(w_F, w_R, method='bisection', return_dict=True)
"""

Expand All @@ -228,8 +230,8 @@ def BAR(w_F, w_R, DeltaF=0.0, compute_uncertainty=True, uncertainty_method='BAR'
nfunc = 0

if method == 'bisection' or method == 'false-position':
UpperB = EXP(w_F)['Delta_f']
LowerB = -EXP(w_R)['Delta_f']
UpperB = EXP(w_F, return_dict=True)['Delta_f']
LowerB = -EXP(w_R, return_dict=True)['Delta_f']

FUpperB = BARzero(w_F, w_R, UpperB)
FLowerB = BARzero(w_F, w_R, LowerB)
Expand All @@ -242,10 +244,14 @@ def BAR(w_F, w_R, DeltaF=0.0, compute_uncertainty=True, uncertainty_method='BAR'
if compute_uncertainty:
result_vals['Delta_f'] = 0.0
result_vals['dDelta_f'] = 0.0
return result_vals
if return_dict:
return result_vals
return 0.0, 0.0
else:
result_vals['Delta_f'] = 0.0
return result_vals
result_vals['Delta_f'] = 0.0
if return_dict:
return result_vals
return 0.0

while FUpperB * FLowerB > 0:
# if they have the same sign, they do not bracket. Widen the bracket until they have opposite signs.
Expand Down Expand Up @@ -487,12 +493,16 @@ def BAR(w_F, w_R, DeltaF=0.0, compute_uncertainty=True, uncertainty_method='BAR'
print("DeltaF = {:8.3f} +- {:8.3f}".format(DeltaF, dDeltaF))
result_vals['Delta_f'] = DeltaF
result_vals['dDelta_f'] = dDeltaF
if return_dict:
return result_vals
return DeltaF, dDeltaF
else:
if verbose:
print("DeltaF = {:8.3f}".format(DeltaF))
result_vals['Delta_f'] = DeltaF

return result_vals
if return_dict:
return result_vals
return DeltaF

#=============================================================================================
# For compatibility with 2.0.1-beta
Expand Down
Loading

0 comments on commit 1d14e80

Please sign in to comment.