forked from xrucka/GPUJPEG
-
Notifications
You must be signed in to change notification settings - Fork 0
GPUJPEG
License
Unknown, BSD-2-Clause licenses found
Licenses found
Unknown
LICENSE
BSD-2-Clause
COPYING
chongyuelinn-nus/GPUJPEG
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
GPUJPEG JPEG encoder and decoder library and console application for NVIDIA GPUs. ** Modified to take in image for encoding which is already in GPU** AUTHOR: Martin Srom, CESNET z.s.p.o Jan Brothánek Martin Jirman Jiri Matela Martin Pulec Petr Holub DESCRIPTION: The first test implementation of the JPEG image compression standard for NVIDIA GPUs used for real-time transmission of high-definition video. OVERVIEW: -It uses NVIDIA CUDA platform. -Not optimized yet (it is only the first test implementation). -Encoder and decoder use Huffman coder for entropy encoding/decoding. -Encoder produces by default baseline JPEG codestream which consists of proper codestream headers and one scan for each color component without subsampling and it uses restart flags that allows fast parallel encoding. The quality of encoded images can be specified by value 0-100. -Optionally encoder can produce interleaved stream (all components in one scan) or/and subsampled stream. -Decoder can decompress only JPEG codestreams that can be generated by encoder. If scan contains restart flags, decoder can use parallelism for fast decoding. -Encoding/Decoding of JPEG codestream is divided into following phases: Encoding: Decoding 1) Input data loading 1) Input data loading 2) Preprocessing 2) Parsing codestream 3) Forward DCT 3) Huffman decoder 4) Huffman encoder 4) Inverse DCT 5) Formatting codestream 5) Postprocessing and they are implemented on CPU or/and GPU as follows: -CPU: -Input data loading -Parsing codestream -Huffman encoder/decoder (when restart flags are disabled) -Output data formatting -GPU: -Preprocessing/Postprocessing (color component parsing, color transformation RGB <-> YCbCr) -Forward/Inverse DCT (discrete cosine transform) -Huffman encoder/decoder (when restart flags are enabled) PERFORMANCE: Following tables summarizes encoding/decoding performance using NVIDIA GTX 580 for non-interleaved and non-subsampled stream with different quality settings (time, PSNR and encoded size values are averages of encoding several images, each of them multiple times): Encoding: | 4k (4096x2160) | HD (1920x1080) --------+----------------------------------+--------------------------------- quality | duration | psnr | size | duration | psnr | size --------+----------+----------+------------+--------------------------------- 10 | 26.79 ms | 29.33 dB | 539.30 kB | 6.71 ms | 27.41 dB | 145.90 kB 20 | 26.91 ms | 32.70 dB | 697.20 kB | 6.74 ms | 30.32 dB | 198.30 kB 30 | 27.17 ms | 34.63 dB | 850.60 kB | 6.84 ms | 31.92 dB | 243.60 kB 40 | 27.19 ms | 35.97 dB | 958.90 kB | 6.89 ms | 32.99 dB | 282.20 kB 50 | 27.29 ms | 36.94 dB | 1073.30 kB | 6.92 ms | 33.82 dB | 319.10 kB 60 | 27.39 ms | 37.96 dB | 1217.10 kB | 6.95 ms | 34.65 dB | 360.00 kB 70 | 27.51 ms | 39.22 dB | 1399.20 kB | 7.04 ms | 35.71 dB | 422.10 kB 80 | 27.76 ms | 40.67 dB | 1710.00 kB | 7.13 ms | 37.15 dB | 526.70 kB 90 | 28.36 ms | 42.83 dB | 2441.40 kB | 7.32 ms | 39.84 dB | 768.40 kB 100 | 35.47 ms | 47.09 dB | 7798.70 kB | 9.31 ms | 47.21 dB | 2499.60 kB Decoding: | 4k (4096x2160) | HD (1920x1080) --------+----------------------------------+--------------------------------- quality | duration | psnr | size | duration | psnr | size --------+----------+----------+------------+--------------------------------- 10 | 10.28 ms | 29.33 dB | 539.30 kB | 3.13 ms | 27.41 dB | 145.90 kB 20 | 11.31 ms | 32.70 dB | 697.20 kB | 3.59 ms | 30.32 dB | 198.30 kB 30 | 12.36 ms | 34.63 dB | 850.60 kB | 3.97 ms | 31.92 dB | 243.60 kB 40 | 12.90 ms | 35.97 dB | 958.90 kB | 4.28 ms | 32.99 dB | 282.20 kB 50 | 13.45 ms | 36.94 dB | 1073.30 kB | 4.56 ms | 33.82 dB | 319.10 kB 60 | 14.71 ms | 37.96 dB | 1217.10 kB | 4.81 ms | 34.65 dB | 360.00 kB 70 | 15.03 ms | 39.22 dB | 1399.20 kB | 5.24 ms | 35.71 dB | 422.10 kB 80 | 16.64 ms | 40.67 dB | 1710.00 kB | 5.89 ms | 37.15 dB | 526.70 kB 90 | 19.99 ms | 42.83 dB | 2441.40 kB | 7.48 ms | 39.84 dB | 768.40 kB 100 | 46.45 ms | 47.09 dB | 7798.70 kB | 16.42 ms | 47.21 dB | 2499.60 kB USAGE: 1) LIBGPUJPEG LIBRARY: To build libgpujpeg library check REQUIREMENTS and go to gpujpeg/libgpujpeg/ directory and run 'make' command. The shared library object ./libgpujpeg.so will be build. To use library in your project you have to include library to your sources and linked shared library object to your executable: #include "libgpujpeg/gpujpeg.h" ENCODING: For encoding by libgpujpeg library you have to declare two structures and set proper values to them. The first is definition of encoding/decoding parameters, and the second is structure with parameters of input image: struct gpujpeg_parameters param; gpujpeg_set_default_parameters(¶m); param.quality = 80; // (default value is 75) param.restart_interval = 16; // (default value is 8) param.interleaved = 1; // (default value is 0) struct gpujpeg_image_parameters param_image; gpujpeg_image_set_default_parameters(¶m_image); param_image->width = 1920; param_image->height = 1080; param_image->comp_count = 3; // (for now, it must be 3) param_image->color_space = GPUJPEG_RGB; // or GPUJPEG_YCBCR_ITU_R or GPUJPEG_YCBCR_JPEG // (default value is GPUJPEG_RGB) param_image.sampling_factor = GPUJPEG_4_4_4; // or GPUJPEG_4_2_2 // (default value is GPUJPEG_4_4_4) If you want to use subsampling in JPEG format call following function, that will set default sampling factors (2x2 for Y, 1x1 for Cb and Cr): // Use default sampling factors gpujpeg_parameters_chroma_subsampling(¶m); Or define sampling factors by hand: // User custom sampling factors param.sampling_factor[0].horizontal = 4; param.sampling_factor[0].vertical = 4; param.sampling_factor[1].horizontal = 1; param.sampling_factor[1].vertical = 2; param.sampling_factor[2].horizontal = 2; param.sampling_factor[2].vertical = 1; Next you have to initialize CUDA device by calling: if ( gpujpeg_init_device(device_id, 0) ) return -1; where first parameters is CUDA device (e.g. device_id = 0) id and second parameter is flag if verbose output should be used (0 or GPUJPEG_VERBOSE). Next step is to create encoder: struct gpujpeg_encoder* encoder = gpujpeg_encoder_create(¶m, ¶m_image); if ( encoder == NULL ) return -1; When creating encoder, library allocates all device buffers which will be needed for image encoding and when you encode concrete image, they are already allocated and encoder will used them for every image. Now we need raw image data that we can encode by encoder, for example we can load it from file: int image_size = 0; uint8_t* image = NULL; if ( gpujpeg_image_load_from_file("input_image.rgb", &image, &image_size) != 0 ) return -1; Next step is to encode uncompressed image data to JPEG compressed data by encoder: struct gpujpeg_encoder_input encoder_input; gpujpeg_encoder_input_set_image(&encoder_input, image); uint8_t* image_compressed = NULL; int image_compressed_size = 0; if ( gpujpeg_encoder_encode(encoder, &encoder_input, &image_compressed, &image_compressed_size, false) != 0 ) return -1; /** ** set the last variable to true if the image in the &encoder_input is on the device** **/ Compressed data are placed in internal encoder buffer so we have to save them somewhere else before we start encoding next image, for example we can save them to file: if ( gpujpeg_image_save_to_file("output_image.jpg", image_compressed, image_compressed_size) != 0 ) return -1; Now we can load, encode and save next image or finish and move to clean up encoder. Finally we have to clean up so destroy loaded image and destroy the encoder. gpujpeg_image_destroy(image); gpujpeg_encoder_destroy(encoder); DECODING: For decoding we don't need to initialize two structures of parameters. We only have to initialize CUDA device if we haven't initialized it yet and create decoder: if ( gpujpeg_init_device(device_id, 0) ) return -1; struct gpujpeg_decoder* decoder = gpujpeg_decoder_create(); if ( decoder == NULL ) return -1; Now we have two options. The first is to do nothing and decoder will postpone buffer allocations to decoding first image where it determines proper image size and all other parameters. All the following images must have the same parameters. The second option is to provide input image size and optionally other parameters and the decoder will allocate all buffers and it is fully ready when encoding even the first image. struct gpujpeg_parameters param; gpujpeg_set_default_parameters(¶m); param.restart_interval = 16; param.interleaved = 1; struct gpujpeg_image_parameters param_image; gpujpeg_image_set_default_parameters(¶m_image); param_image->width = 1920; param_image->height = 1080; param_image->comp_count = 3; // Pre initialize decoder before decoding gpujpeg_decoder_init(decoder, ¶m, ¶m_image); If you want to specify output image color space and/or subsampling factor, you can use following two parameters. You can specify them though the param structure befor passing it to gpujpeg_decoder_init. But if you postpone this initialization process to the first image, you have no other option than specify them in this way: decoder->coder.param_image.color_space = GPUJPEG_RGB; // or GPUJPEG_YCBCR_ITU_R or GPUJPEG_YCBCR_JPEG // (default value is GPUJPEG_RGB) decoder->coder.param_image.sampling_factor = GPUJPEG_4_4_4; // or GPUJPEG_4_2_2 // (default value is GPUJPEG_4_4_4) Next we have to load JPEG image data from file and decoded it to raw image data: int image_size = 0; uint8_t* image = NULL; if ( gpujpeg_image_load_from_file("input_image.jpg", &image, &image_size) != 0 ) return -1; struct gpujpeg_decoder_output decoder_output; gpujpeg_decoder_output_set_default(&decoder_output); if ( gpujpeg_decoder_decode(decoder, image, image_size, &decoder_output) != 0 ) return -1; Now we can save decoded raw image data to file and perform cleanup: if ( gpujpeg_image_save_to_file("output_image.rgb", decoder_output.data, decoder_output.data_size) != 0 ) return -1; gpujpeg_image_destroy(image); gpujpeg_decoder_destroy(decoder); 2) GPUJPEG CONSOLE APPLICATION: The console application gpujpeg uses libgpujpeg library to demonstrate it's functions. To build console application check REQUIREMENTS and go to gpujpeg directory (where README and LICENSE files are placed) and run 'make' command. It builds libgpugjpeg library in subdirectory ./libgpujpeg/ and it creates executable file ./gpujpeg and run script ./gpujpeg.sh, which runs executable file linked to runtime library libgpujpeg.so (which is placed in ./libgpujpeg/ subdirectory). To encode image from raw RGB image file to JPEG image file use following command: ./gpujpeg.sh --encode --size=WIDTHxHEIGHT --quality=QUALITY \ INPUT_IMAGE.rgb OUTPUT_IMAGE.jpg You must specify input image size by --size=WIDTHxHEIGHT parameter. Optionally you can specify desired output quality by parameter --quality=QUALITY which accepts values 0-100. Console application accepts a few more parameters and you can list them by folling command: ./gpujpeg.sh --help To decode image from JPEG image file to raw RGB image file use following command: ./gpujpeg.sh --decode OUTPUT_IMAGE.jpg INPUT_IMAGE.rgb You can also encode and decode image to test the console application: ./gpujpeg.sh --encode --decode --size=WIDTHxHEIGHT --quality=QUALITY \ INPUT_IMAGE.rgb OUTPUT_IMAGE.jpg Decoder will create new decoded file OUTPUT_IMAGE.jpg.decoded.rgb and do not overwrite your INPUT_IMAGE.rgb file. Console application is able to load raw RGB image file data from *.rgb files and raw YUV and YUV422 data from *.yuv files. For YUV422 you must specify *.yuv file and use '--sampling-factor=4:2:2' parameter. All supported parameters for console application are following: --help Prints console application help --size=1920x1080 Input image size in pixels, e.g. 1920x1080 --sampling-factor=4:4:4 Input image sampling factor (supported are '4:4:4' and '4:2:2') --colorspace=rgb Input image colorspace (supported are 'rgb', 'yuv' and 'ycbcr-jpeg', where 'yuv' means YCbCr ITU-R BT.601), when *.yuv file is specified, instead of default 'rgb', automatically the colorspace 'yuv' is used --quality Set output quality level 0-100 (default 75) --restart=8 Set restart interval for encoder, number of MCUs between restart markers --subsampled Produce chroma subsampled JPEG stream --interleaved Produce interleaved stream --encode Encode images --decode Decode images --device=0 By using this parameter you can specify CUDA device id which will be used for encoding/decoding. Restart interval is important for parallel huffman encoding and decoding. When '--restart=N' is used (default is 8), the coder can process each N MCUs independently, and so he can code each N MCUs in parallel. When '--restart=0' is specified, restart interval is disabled and the coder must use CPU version of huffman coder (because on GPU would run only one thread, which is very slow). The console application can encode/decode multiple images by following command: ./gpujpeg.sh ARGUMENTS INPUT_IMAGE_1.rgb OUTPUT_IMAGE_1.jpg \ INPUT_IMAGE_2.rgb OUTPUT_IMAGE_2.jpg ... REQUIREMENTS: To be able to build and run libgpujpeg library and gpujpeg console application you need: 1) CUDA Toolkit (http://developer.nvidia.com/cuda-toolkit) installed, default installation path is /usr/local/cuda. If you have the CUDA installed somewhere else, you need to specify it by environment variable CUDA_INSTALL_PATH or in Makefiles by CUDA_INSTALL_PATH variable. 2) NVIDIA developer drivers 3) CUDA enabled NVIDIA GPU LICENSE: See file LICENSE. This software contains source code provided by NVIDIA Corporation. This software source code is based on SiGenGPU [3]. REFERENCES: [1] http://www.w3.org/Graphics/JPEG/itu-t81.pdf [2] http://www.ijg.org/ [3] https://github.com/silicongenome/SiGenGPU [4] http://www.ecma-international.org/publications/files/ECMA-TR/TR-098.pdf
About
GPUJPEG
Resources
License
Unknown, BSD-2-Clause licenses found
Licenses found
Unknown
LICENSE
BSD-2-Clause
COPYING
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- C++ 40.7%
- Cuda 28.3%
- C 27.8%
- Makefile 1.2%
- M4 1.2%
- Shell 0.7%
- Smarty 0.1%