Skip to content

Commit

Permalink
Updated optimize documentation for static_parameter_intervention defi…
Browse files Browse the repository at this point in the history
…nition (#544)

* Updated optimize documentation for static_parameter_intervention definition

* lint

---------

Co-authored-by: Sam Witty <[email protected]>
  • Loading branch information
anirban-chaudhuri and SamWitty authored Mar 21, 2024
1 parent a51ad4e commit fb0eec9
Showing 1 changed file with 7 additions and 5 deletions.
12 changes: 7 additions & 5 deletions pyciemss/interfaces.py
Original file line number Diff line number Diff line change
Expand Up @@ -791,11 +791,13 @@ def optimize(
- A callable function defining the quantity of interest to optimize over.
risk_bounds: float
- The threshold on the risk constraint.
static_parameter_interventions: Dict[torch.Tensor, str]
- A dictionary of the form {intervention_time: parameter_name}
of static parameter interventions to optimize over.
- Each key is the time at which the intervention is applied.
- Each value is a string with the intervention parameter name.
static_parameter_interventions: Callable[[torch.Tensor], Dict[float, Dict[str, Intervention]]]
- A callable function of static parameter interventions to optimize over.
- The callable functions are created using the provided templates:
- param_value_objective(): creates a static parameter intervention when optimizing over
(multiple) parameter values
- start_time_objective(): creates a static parameter intervention when optimizing over
(multiple) start times for different parameter
objfun: Callable
- The objective function defined as a callable function definition.
- E.g., to minimize the absolute value of intervention parameters use lambda x: np.sum(np.abs(x))
Expand Down

0 comments on commit fb0eec9

Please sign in to comment.