from cltrier_promptClassify import Pipeline
# init pipeline object
pipeline = Pipeline({
# pipeline objects
'do_classification': True,
'do_evaluation': True,
'do_export': True,
# path to export dir (only if do_export)
'export_path': './path/dir/',
# dataset configuration
'dataset': {
# path to data file (.csv)
'path': './path/file.csv',
# column containing src text
'text_column': 'text',
# column containing gold label (only if do_evaluation)
'gold_column': 'gold',
# (optional) batch size used during classification
'batch_size': 16,
},
# classifier configuration
'classifiers': [
# label for export, slug/url from hugging face hub
['model_label', 'model_huggingface_slug'],
# ...
],
'templates': [
# {classes}, {text} are dynamically replaced during runtime
['template_label', 'prompt_template (must include {classes} and {text})'],
# ...
],
# list of classes to use
'classes': ['class_1', 'class_2']
})
# call pipeline object
pipeline()
python3 -m cltrier_promptClassify ./path/to/config.toml
# pipeline objects
do_classification = true
do_evaluation = true
do_export = true
# path to export dir
export_path = './path/dir/'
# dataset configuration
[dataset]
# path to data file (.csv)
path = './path/file.csv'
# column containing src text
text_column = 'text'
# column containing gold label (only if do_evaluation)
gold_column = 'gold'
# (optional) batch size used during classification
batch_size = 16
# classifier configuration
[classify]
# label for export, slug/url from hugging face hub
models = [
['model_label', 'model_huggingface_slug'],
# ...
]
# {classes}, {text} are dynamically replaced during runtime
templates = [
['template_label', 'prompt_template (must include {classes} and {text})'],
]
# list of classes to use
classes = ['class_1', 'class_2']